Advertisement

Somnologie - Schlafforschung und Schlafmedizin

, Volume 12, Issue 3, pp 234–243 | Cite as

EMF-protection sleep study near mobile phone base stations

  • Norbert Leitgeb
  • Jörg Schröttner
  • Roman Cech
  • Reinhold Kerbl
ORIGINAL ARTICLE

Summary

In a crossover field study the potential role of radio frequency (RF) electromagnetic fields (EMF) in causing sleep disturbances was investigated in sleeping rooms of 43 volunteers (26 women and 17 men) attributing their sleep problems to RF-EMF from mobile telecommunication base stations. With a new approach of protection from rather than provocation to RF-EMF exposure potential sleep parameter changes were investigated. With mobile shields three conditions (true-shield, sham-shield and control) were tested in random order. Shielding conditions were single-blind to allow controlling shielding efficiency while data analysis was performed double-blind by an independent team. RF-EMF immissions were continuously recorded frequency-selectively. In total, 465 nights were assessed by morning questionnaires and polysomnographic recordings. Pooled analysis did not exhibit statistically significant EMF-dependent sleep parameters, neither on total RF-EMF immissions nor on base station signals. Volunteer-specific analysis mostly did not show any significant effect on sleep parameters. Subjective sleep parameters of seven volunteers (16 %) exhibited significant placebo effects. However, four volunteers (9 %) showed consistent statistical significant prolongations of sleep latencies: for sleep onset latency to sleep stage 1 it was up to 36.8 min (median of unshielded nights 4.7 min), from sleep stage 1 to sleep stage 2 up to 3.8 min ( median 2.3 min) and from sleep stage 2 to 3 up to 18.0 min (median 8.0 min). REM latency was prolonged up to 160.0 min (median 85.8 min).

Key words

mobile telecommunication non-thermal effects sleep study electromagnetic hypersensitivity 

EMF-Protektions-Schlafstudie in der Nähe von Mobilfunk-Basisstationen

Zusammenfassung

In einer Crossover-Studie wurde die mögliche kausale Rolle hochfrequenter (HF) elektromagnetischer Felder (EMF) für Schlafstörungen in den Schlafzimmern von 43 elektrosensiblen Probanden (26 Frauen und 17 Männer) untersucht. Dabei wurde mit einem neuartigen Studienansatz und mobilen Schirmen Schlafparameteränderungen nicht in Bezug auf zusätzliche, sondern auf den Schutz vor vorhandenen Immissionen untersucht. In zufälliger Reihenfolge wurden dazu drei Bedingungen (Kontrolle, Sham-Schirm und Verum-Schirm) getestet. Die Schirmbedingungen waren einfach-blind, um jeweils die Schirmqualität überprüfen zu können, die Auswertung erfolgte doppelblind durch ein unabhängiges Auswerteteam. Die hochfrequenten Immissionen wurden kontinuierlich und frequenzselektiv aufgezeichnet. Insgesamt wurden 465 Nächte durch Morgenfragebögen und polysomnographische Aufzeichnungen erfasst. Die gepoolte Analyse zeigte keine statistisch signifikanten EMF-abhängigen Veränderungen der Schlafparameter, weder von der gesamten HF-EMF-Immission noch vom Mobilfunkanteil. Die Probanden-spezifische Auswertung zeigte bei der überwiegenden Mehrheit der Probanden keine statistisch signifikanten Effekte. Bei sieben Probanden (16 %) zeigten sich signifikante Placebo-Effekte bei subjektiven Schlafparametern, vier Probanden (9 %) zeigten jedoch konsistent statistisch signifikante Verlängerungen von Latenzzeiten, für die Einschlaflatenz zum Stadium 1 bis zu 36,8 min (Median der ungeschirmten Nächte 4,7 min), die Latenz vom Stadium 1 bis Stadium 2 bis 3,8 min (Median 2,3 min), vom Stadium 2 bis Stadium 3 bis 18,0 min (Median 8,0 min). Die Verlängerung der REM-Latenz betrug bis zu 160,0 min (Median 85,8 min).

Schlüsselwörter

Mobilkommunikation nicht-thermische Effekte Schlafstudie Elektrosensibilität 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Rassoul G, El-Fateh OA, Salem MA (2007) Michael A, Farahat F, El-Batanouny M, Salem E. Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology 28(2):434–440PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Khlaiwi T, Meo SA (2004) Association of mobile phone radiation with fatigue, headache, dizziness, tension and sleep disturbance in Saudi population. Saudi Med J 25:732–736PubMedGoogle Scholar
  3. 3.
    Altpeter ES, Röösli M, Battaglia M, Pfluger D, Minder CE, Abelin T (2006) Effect of short-wave (6–22 MHz) magnetic fields on sleep quality and melatonin cycle in humans: The Schwarzenburg shut-down study. Bioelectromagnetics 27(2):142–150PubMedCrossRefGoogle Scholar
  4. 4.
    Altpeter ES, Krebs T, Pfluger DH, vonKänel J, Blattmann R, Emmenegger D, Cloetta B, Rogger U, Gerber H, Manz B, Coray R, Baumann R, Staerk K, Griot C, Abelin T (1995) Study on health effects of the shortwave transmitter station of Schwarzenburg, Berne, Switzerland. BEW Publication No 25Google Scholar
  5. 5.
    Arnetz B, Akerstedt T, Hillert, L, Lowden A, Kuster N, Wiholm C (2007) The efffects of 884MHz GSM wireless commmunication signals on self-reported symptoms and sleep – An experimental provocation study. PIERS Online 3:1148–1150CrossRefGoogle Scholar
  6. 6.
    Borbély AA, Huber R, Graf T, Fuchs B, Gallman E, Achermann P (1999) Pulsed high-frequency electromagnetic field affects human sleep EEG. Neurosci Lett 275:207–210PubMedCrossRefGoogle Scholar
  7. 7.
    Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ (1988) The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practise and Research. Psychiatry Research 28:193–213CrossRefGoogle Scholar
  8. 8.
    Fahrenberg J, Hampel R, Selg H (2001) Das Freiburger Persönlichkeitsinventar. Hogrefe, GöttingenGoogle Scholar
  9. 9.
    Frick U, Rahm J, Eichhammer P (2002) Risk perception, somatization, and self report of complaints to related electromagnetic fields – a randomized survey study. Int J Hyg Environ Health 205(5):353–360PubMedCrossRefGoogle Scholar
  10. 10.
    Fritzer G, Göder R, Friege L, Wachter J, Hansen V, Hinze-Seich D, Aldenhoff JB (2007) Effects of short- and long-term pulsed radiofrequency electromagnetic fields on night sleep and cognitive functions in healthy subjects. Bioelectromagnetics 28:316–325PubMedCrossRefGoogle Scholar
  11. 11.
    Herr CEW, zur Nieden A, Lindenstruth M, Stilianakis NI, Seitz H, Eikmann TF (2005) Relating Use of Mobile Phones to Reported Sleep Quality. Somnology 9 (4):199–202CrossRefGoogle Scholar
  12. 12.
    Hoffmann RM, Müller T, Hajak G, Cassel W (1997) Abend-Morgenprotokolle in Schlafforschung und Schlafmedizin – ein Standardinstrument für den deutschsprachigen Raum. Somnologie 1:103–109Google Scholar
  13. 13.
    Huber R, Schuderer J, Graf T, Jütz K, Borbély AA, Kuster N, Achermann P (2003) Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate. Bioelectromagnetics 24:262–276PubMedCrossRefGoogle Scholar
  14. 14.
    Huber R, Treyer V, Borbély AA, Schuderer J, Gottselig JM, Landolt HP, Werth E, Berthold T, Kuster N, Buck A, Achermann P (2002) Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J. Sleep Res 11:289–295PubMedCrossRefGoogle Scholar
  15. 15.
    Huber R, Graf T, Cote KA, Wittmann L, Gallmann E, Matter D, Schuderer J, Kuster N, Borbély A, Achermann P (2000) Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep. NeuroReport 11:3321–3325PubMedCrossRefGoogle Scholar
  16. 16.
    Hung C-S, Anderson C, Horne JA, McEvoy P (2007) Mobild phone ‚talk mode’ signal deleys EEG-determined sleep onset. Neurosc Lett 42:82–86CrossRefGoogle Scholar
  17. 17.
    Hutter HP, Moshammer H, Wallner P, Kundi M (2006) Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone basestations. Occup Environ Med 63:307–313PubMedCrossRefGoogle Scholar
  18. 18.
    ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz) (1998) Health Physics 74(4):494–522Google Scholar
  19. 19.
    Leitgeb N, Schröttner J, Cech R (2005a) Electric current perception of the general population including children and elderly. J Med Eng Technol 29:215–218CrossRefGoogle Scholar
  20. 20.
    Leitgeb N, Schröttner J, Böhm M (2005b) Does „electromagnetic pollution“ cause illness? An inquiry among Austrian general practitioners. Wiener Med Wochenschr 155:237–241CrossRefGoogle Scholar
  21. 21.
    Leitgeb N, Schröttner J, Cech R, Kerbl R (2004) Untersuchung von Schlafstörungen um Hochfrequenz-Sendeanlagen. Biomedizinische Technik 49:186–193PubMedCrossRefGoogle Scholar
  22. 22.
    Leitgeb N, Schröttner J, Cech R (2002) Electric current perception study challenges electric safety limits. J Med Eng Technol 26:168–172PubMedCrossRefGoogle Scholar
  23. 23.
    Loughran SP, Wood AW, Barton JM, Croft RJ, Thompson B, Stough C (2005) The effect of electromagnetic fields emitted by mobile phones on human sleep. NeuroReport 16:1973–1976PubMedCrossRefGoogle Scholar
  24. 24.
    Mann K, Röschke J (1996) Effects of pulsed high-frequency electromagnetic fields on human sleep. Neuropsychobiol 33:41–47CrossRefGoogle Scholar
  25. 25.
    Mann K (1998) Effects of pulsed highfrequency electromagnetic fields on the neuroendocrine system. Neuroendocrinol 67:139–144CrossRefGoogle Scholar
  26. 26.
    Navarro EA, Segura J, Gómez-Perretta C, Portolés M, Maestu C, Bardasano JL (2002) Exposure from cellular phone base stations. A first approach. Proceedings of Biological Effects of EMFs 2nd Int. Workshop, Rhode, pp 353–358Google Scholar
  27. 27.
    Rechtschaffen A, Kales A (1968) A manual of standardised terminology, techniques and scoring system for sleep stages of human subjects. Washington Public Services, US Gov. Printing Office, Washington, DCGoogle Scholar
  28. 28.
    Regel SJ, Tinguely G, Schuderer J, Adam M, Kuster N, Landolt HP, Achermann P (2007) Pulsed radio-frequency electromagnetic fields: dose-dependent effects on sleep, the sleep EEG and cognitive performance. Sleep Res 16(3):253–258CrossRefGoogle Scholar
  29. 29.
    Saletu B, Wessely P, Grünberger J, Schultes M (1987) Erste klinische Erfahrungen mit einem neuen schlafanstoßenden Benzodiazepin, Cinolazepam, mittels eines Selbstbeurteilungsbogens für Schlaf- und Aufwachqualität (SSA). Neuropsychiatrie 1:169–176Google Scholar
  30. 30.
    Santini R, Santini P, Danze JM, LeRuz P, Seigne M (2002) Enquête sur la santé de riverains de stations relais de téléphonie mobile: 1/ Incidence de la distance et du sexe. Pathol Biol 50:369–373PubMedCrossRefGoogle Scholar
  31. 31.
    Schröttner J, Leitgeb N, Hillert L (2007) Investigation of electric current perception thresholds of different EHS groups. Bioelectromagnetics 28:208–213PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner P, Röschke J, Mann K, Hiller W, Frank C (1998) Human sleep under the influence of pulsed radiofrequency electromagnetic fields: A Polysomnographic study using standardized conditions. Bioelectromagnetics 19:199–202PubMedCrossRefGoogle Scholar
  33. 33.
    Wagner P, Röschke J, Mann K, Fell J, Hiller W, Frank C, Grözinger M (2000) Human sleep EEG under the influence of pulsed RF electromagnetic fields. Neuropsychobiol 42:207–212CrossRefGoogle Scholar
  34. 34.
    WHO (2005) Electromagnetic fields and public health. Electromagnetic hypersensitivity. Fact sheet No. 296, GenevaGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Norbert Leitgeb
    • 1
  • Jörg Schröttner
    • 1
  • Roman Cech
    • 1
  • Reinhold Kerbl
    • 2
  1. 1.Institute of Health Care EngineeringGraz University of TechnologyGrazAustria
  2. 2.Sleep LaboratoryUniversity Paediatric ClinicGrazAustria

Personalised recommendations