Advertisement

Plant Biotechnology Reports

, Volume 13, Issue 5, pp 511–520 | Cite as

Acquisition of seed dormancy breaking in rice (Oryza sativa L.) via CRISPR/Cas9-targeted mutagenesis of OsVP1 gene

  • Yu Jin Jung
  • Hyo Ju Lee
  • Sangsu Bae
  • Jong Hee Kim
  • Dong Hyen Kim
  • Hee Kyoung Kim
  • Ki Hong Nam
  • Franz Marielle Nogoy
  • Yong-Gu Cho
  • Kwon Kyoo KangEmail author
Original Article

Abstract

Genome editing offers great advantages in identifying gene function and generating agronomical important mutations in crops. Here, we report the development of edited lines with reduced seed dormancy by knockout viviparous-1 (OsVP1) gene known as a transcription factor that regulates key aspects of plant seed development and ABA signaling in rice. Thirty-three genetic edited lines out of 55 T0 rice plants were generated using CRISPR/Cas9 system. Sequencing analysis showed that the plants had four different mutation types at the target site of OsVP1, the mutations were found to be transmitted to the succeeding generations. Stable transmission of CRISPR/Cas9-mediated mutant lines without the transferred DNA (T-DNA) was confirmed by segregation in the T1 generation. Regarding many investigated agronomic trait, there are no significant differences between homozygous mutants and wildtype plants under field’s growth conditions. Especially in RT-PCR analysis of ABA/GA signaling genes, the expression of OsNCED2, OsGA20ox1, OsGA20ox2, OsGA20ox3 genes in homozygous mutants was increased compared to wildtype plants. Results of this study exemplified the effectiveness of CRISPR/Cas9 as a gene editing tool in broke down the seed dormancy in rice.

Keywords

CRISPR/Cas9 Gene expression Genetic transformation OsVP1 Seed dormancy 

Notes

Acknowledgements

This research was supported by a Grant from the Next-Generation BioGreen 21 Program (Project no. PJ01368902), Rural Development Administration, Republic of Korea.

Supplementary material

11816_2019_580_MOESM1_ESM.docx (893 kb)
Supplementary file1 (DOCX 893 kb)
11816_2019_580_MOESM2_ESM.docx (18 kb)
Supplementary file2 (DOCX 17 kb)

References

  1. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475.  https://doi.org/10.1093/bioinformatics/btu048 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39.  https://doi.org/10.1186/1746-4811-9-39 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066CrossRefGoogle Scholar
  4. Bewley JD, Bradford KJ, Hilhorst HWM, NonogakiH (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, Heidelberg, pp 249–250.  https://doi.org/10.1007/978-1-4614-4693-4https://doi.org/10.1007/978-1-4614-4693-4
  5. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52.  https://doi.org/10.1016/j.biotechadv.2014.12.006 CrossRefPubMedGoogle Scholar
  6. Cai HW, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846.  https://doi.org/10.1007/s001220051360 CrossRefGoogle Scholar
  7. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232.  https://doi.org/10.1038/nbt.2507 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dong Y, Tsuzuki E, Kamiunten H, Terao H, Lin D, Matsuo M, Zheng Y (2003) Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crop Res 81:133–139.  https://doi.org/10.1016/S0378-4290(02)00217-4 CrossRefGoogle Scholar
  9. Du W, Cheng J, Cheng Y, Wang L, He Y, Wang Z, Zhang H (2015) Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Plant Biol 17:1156–1164.  https://doi.org/10.1111/plb.12371 CrossRefPubMedGoogle Scholar
  10. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523.  https://doi.org/10.1111/j.1469-8137.2006.01787.x CrossRefPubMedGoogle Scholar
  11. Flintham J, Adlam R, Bassoi M, Holdsworth M, Gale M (2002) Mapping genes for resistance to sprouting damage in wheat. Euphytica 126:39–45.  https://doi.org/10.1023/A:1019632008244 CrossRefGoogle Scholar
  12. Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3–1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105:12623–12628.  https://doi.org/10.1073/pnas.0805303105 CrossRefPubMedGoogle Scholar
  13. Gao Y, Liu J, Fan J (2011) Construction and transformation of RNAi vector of OsVP1 for a regulatory gene of pre-harvest sprouting in Oryza sativa. AGRIS 43:1321–1327Google Scholar
  14. Graeber KAI, Nakabayashi K, Miatton E, Leubner-Metzger GERHARD, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 3:1769–1786.  https://doi.org/10.1111/j.1365-3040.2012.02542.x CrossRefGoogle Scholar
  15. Gu XY, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166:1503–1516.  https://doi.org/10.1534/genetics.166.3.1503 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300.  https://doi.org/10.1016/j.tplants.2007.06.003 CrossRefPubMedGoogle Scholar
  17. Han Y, Luo D, Usman B, Nawaz G, Zhao N, Liu F, Li R (2018) Development of high yielding glutinous cytoplasmic male sterile rice (Oryza sativa L.) lines through CRISPR/Cas9 based mutagenesis of Wx and TGW6 and proteomic analysis of anther. Agronomy 8:290.  https://doi.org/10.3390/agronomy8120290 CrossRefGoogle Scholar
  18. Hattori M, Adachi H, Tsujimoto M, Arai H, Inoue K (1994) Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor. Nature 370:216.  https://doi.org/10.1038/370216a0 CrossRefPubMedGoogle Scholar
  19. Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24:319–344.  https://doi.org/10.1007/s00344-005-0110-2 CrossRefGoogle Scholar
  20. Kim H, Kim ST, Ryu J, Choi MK, Kweon J, Kang BC, Kim SG (2016) A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58:705–712.  https://doi.org/10.1111/jipb.12474 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Koornneef M, Hanhart CJ, Hilhorst HW, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90:463–469.  https://doi.org/10.1104/pp.90.2.463 CrossRefPubMedPubMedCentralGoogle Scholar
  22. LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452.  https://doi.org/10.1074/jbc.M111955200 CrossRefPubMedGoogle Scholar
  23. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939.  https://doi.org/10.1126/science.1123604 CrossRefPubMedGoogle Scholar
  24. Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Li H (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377.  https://doi.org/10.3389/fpls.2016.00377 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010) Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327:94–97.  https://doi.org/10.1126/science.1180278 CrossRefPubMedGoogle Scholar
  26. Liu Y, Xu Y, Xiao J, Ma Q, Li D, Xue Z, Chong K (2011) OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol 168:1098–1105.  https://doi.org/10.1016/j.jplph.2010.12.013 CrossRefPubMedGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  28. Lu B, Xie K, Yang C, Wang S, Liu X, Zhang L, Wan J (2011) Mapping two major effect grain dormancy QTL in rice. Mol Breed 28:453–462.  https://doi.org/10.1007/s11032-010-9495-0 CrossRefGoogle Scholar
  29. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Xie Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284.  https://doi.org/10.1016/j.molp.2015.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Martín-Pizarro C, Triviño JC, Posé D (2018) Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. J Exp Bot 70:885–895.  https://doi.org/10.1093/jxb/ery400 CrossRefPubMedCentralGoogle Scholar
  31. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905.  https://doi.org/10.1016/0092-8674(91)90436-3 CrossRefPubMedGoogle Scholar
  32. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67.  https://doi.org/10.1017/S0960258510000012 CrossRefGoogle Scholar
  33. Nishimura A, Aichi I, Matsuoka M (2006) A protocol for Agrobacterium-mediated transformation in rice. Nat Protoc 1:2796.  https://doi.org/10.1038/nprot.2006.469 CrossRefPubMedGoogle Scholar
  34. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604.  https://doi.org/10.1105/tpc.011650 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Park J, Bae S, Kim JS (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31:4014–4016.  https://doi.org/10.1093/bioinformatics/btv537 CrossRefPubMedGoogle Scholar
  36. Park J, Lim K, Kim JS, Bae S (2017) Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33:286–288.  https://doi.org/10.1093/bioinformatics/btw561 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Raz V, Bergervoet JH, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252PubMedGoogle Scholar
  38. Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797.  https://doi.org/10.1073/pnas.0911965107 CrossRefPubMedGoogle Scholar
  39. Van Der Schaar W, Alonso-Blanco C, Léon-Kloosterziel KM, Jansen RC, Van Ooijen JW, Koornneef M (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79:190.  https://doi.org/10.1038/hdy.1997.142 CrossRefGoogle Scholar
  40. Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhuang C (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep-UK 6:37395.  https://doi.org/10.1038/srep37395 CrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology 2019

Authors and Affiliations

  • Yu Jin Jung
    • 1
    • 2
  • Hyo Ju Lee
    • 1
  • Sangsu Bae
    • 3
  • Jong Hee Kim
    • 1
  • Dong Hyen Kim
    • 1
  • Hee Kyoung Kim
    • 1
  • Ki Hong Nam
    • 1
  • Franz Marielle Nogoy
    • 4
  • Yong-Gu Cho
    • 5
  • Kwon Kyoo Kang
    • 1
    • 2
    Email author
  1. 1.Department of Horticultural Life ScienceHankyong National UniversityAnseongKorea
  2. 2.Institute of Genetic EngineeringHankyong National UniversityAnseongKorea
  3. 3.Department of ChemistryHanyang UniversitySeoulKorea
  4. 4.Department of Crop Science, College of AgricultureCentral Luzon State UniversityMuñozPhilippines
  5. 5.Department of Crop ScienceChungbuk National UniversityCheongjuKorea

Personalised recommendations