Plant Biotechnology Reports

, Volume 13, Issue 6, pp 677–687 | Cite as

Genome divergence in Brassica rapa subspecies revealed by whole genome analysis on a doubled-haploid line of turnip

  • Hye Rang Park
  • Taegu Kang
  • Gibum Yi
  • Seung Hwa Yu
  • Hosub Shin
  • Geon Woo Kim
  • Jeong Eun Park
  • Ye Seul Kim
  • Jin Hoe HuhEmail author
Original Article


Subspecies of Brassica rapa are morphologically and genetically diverse, and include a variety of fresh vegetables grown worldwide. Among them, turnip (B. rapa subsp. rapa) produces a large bulbous taproot, and thus is primarily consumed as a root vegetable in Europe and Asia. In comparison to Chinese cabbage (B. rapa subsp. pekinensis), however, genetic analysis and breeding of turnip is hampered in practice due in part to scarcity of useful genetic resources. In this study, we produced a doubled haploid (DH) line of Ganghwa turnip, an heirloom specialty crop in Korea that is usually propagated by open pollination. Microspores were isolated from young flower buds of Ganghwa turnip, and shoots and roots were sequentially regenerated in vitro. Chromosome doubling was induced with the colchicine treatment, and verified by flow cytometry analysis. The G14 DH line displayed uniformity in overall morphology compared to heterogeneous commercial Ganghwa turnips. The whole genome of G14 was sequenced on an Illumina HiSeq 4000 platform, and the reads mapped onto the B. rapa reference genome identified 1,163,399 SNPs and 779,700 indels. Despite high similarity in overall genome sequence, turnips and Chinese cabbage have different compositions of transposable elements (TEs). In particular, long terminal repeat (LTR) retrotransposons are more enriched in turnips than in Chinese cabbage genomes, in which the gypsy elements are classified as major LTR sequences in the turnip genome. These findings suggest that subspecies-specific TE divergence is in part responsible for huge phenotypic variations observed within the same species.


Brassica rapa Turnip Doubled haploid Whole genome sequencing Molecular marker 



This work was supported by the Agri-Bio Industry Technology Development Program (117045-3) from Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET), Ministry of Agriculture, Food and Rural Affairs (MAFRA), and by the Next-Generation BioGreen 21 Program (PJ01120301) and the National Agricultural Genome Program (PJ013440) by Rural Development Administration (RDA).

Supplementary material

11816_2019_565_MOESM1_ESM.pdf (318 kb)
Supplementary file1 (PDF 317 kb)


  1. Barro F, Marti A (1999) Response of different genotypes of Brassica carinata to microspore culture. Plant Breed 118:79–81CrossRefGoogle Scholar
  2. Belandres HR, Waminal NE, Hwang YJ, Park BS, Lee SS, Huh JH, Kim HH (2015) FISH karyotype and GISH meiotic pairing analyses of a stable intergeneric hybrid xBrassicoraphanus line BB#5. Kor J Hortic Sci Technol 33:83–92Google Scholar
  3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:1–12CrossRefGoogle Scholar
  5. Cheng F, Sun R, Hou X et al (2016) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nature Genet 48:1218–1224PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chun C, Park H, Na H (2011) Microspore-derived embryo formation in Radish (Raphanus sativus L.) according to nutritional and environmental conditions. Hortic Environ Biotechnol 52:530–535CrossRefGoogle Scholar
  7. Ferrie A (2003) Microspore culture of Brassica species. In: Maluszynski M (ed) Doubled haploid production in crop plants, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 205–215CrossRefGoogle Scholar
  8. Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Org Cult 104:301–309CrossRefGoogle Scholar
  9. Ferrie AMR, Epp DJ, Keller WA (1995) Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep 14:580–584PubMedCrossRefGoogle Scholar
  10. Feulner PGD, De-Kayne R (2017) Genome evolution, structural rearrangements and speciation. J Evol Biol 30:1488–1490PubMedCrossRefPubMedCentralGoogle Scholar
  11. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefPubMedCentralGoogle Scholar
  12. Gil-Humanes J, Barro F (2009) Production of Doubled Haploids in Brassica. In: Touraev A (ed) Advances in haploid production in higher plants. Springer, London, pp 65–73CrossRefGoogle Scholar
  13. Gómez-Campo C, Prakash S (1999) Origin and domestication. In: Gómez- Campo C (ed) Biology of Brassica Coenospecies. Elsevier, Amsterdam, pp 33–58CrossRefGoogle Scholar
  14. Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M (2015) De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol 7(4):1192–1205PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hochholdinger F, Baldau JA (2018) Heterosis in plants. Curr Biol 28:R1075–1095CrossRefGoogle Scholar
  16. Hong SY, Lee SS (1995) Microspore culture of xBrassicoraphanus. J Kor Soc Hort Sci 36:453–459Google Scholar
  17. Jeong YM, Kim N, Ahn BO et al (2016) Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet 129(7):1357–1372PubMedCrossRefPubMedCentralGoogle Scholar
  18. Kim S, Park J, Yeom SI et al (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:210PubMedPubMedCentralCrossRefGoogle Scholar
  19. Klopsch R, Witzel K, Börner A, Schreiner M, Hanschen FS (2017) Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips. Food Res Int 100:392–403PubMedCrossRefGoogle Scholar
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kwon JK, Kim BD (2009) Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Mol Cells 27:205–209PubMedCrossRefGoogle Scholar
  22. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:3CrossRefGoogle Scholar
  23. Lee SS, Lee SA, Yang JM, Kim JK (2011) Developing stable progenies of xBrassicoraphanus, an intergeneric allopolyploid between Brassica rapa and Raphanus sativus, through induced mutation using microspore culture. Theor Appl Genet 122:885–891PubMedCrossRefGoogle Scholar
  24. Lee JG, Bonnema G, Zhang N, Kwak JH, de Vos RCH, Beekwilder J (2013) Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. J Agric Food Chem 61:3984–3993PubMedCrossRefGoogle Scholar
  25. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997Google Scholar
  26. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434CrossRefGoogle Scholar
  27. Lin K, Zhang N, Severing EI, Nijveen H, Cheng F, Visser RGF, Wang X, de Ridder D, Bonnema G (2014) Beyond genomic variation—comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genom 15:250CrossRefGoogle Scholar
  28. Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61PubMedCrossRefGoogle Scholar
  29. Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930PubMedPubMedCentralCrossRefGoogle Scholar
  30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303PubMedPubMedCentralCrossRefGoogle Scholar
  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479CrossRefGoogle Scholar
  32. Na H, Kwak J, Chun C (2011) The effect of plant growth regulators, activated charcoal, and AgNO3 on microspore derived embryo formation in broccoli (Brassica oleracea L. var. italica). Hortic Environ Biotechnol 52:524–529CrossRefGoogle Scholar
  33. Pang W, Li X, Chio SR et al (2015) Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis. Mol Breeding 35:54CrossRefGoogle Scholar
  34. Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, Liu C, Boeke JD, Avramopoulos D, Burns KH (2017) Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci 114(20):E3984–E3992PubMedCrossRefPubMedCentralGoogle Scholar
  35. Pfosser M, Amon A, Lelley T, Heberle-Bors E (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21:387–393PubMedCrossRefPubMedCentralGoogle Scholar
  36. Seo M, Sohn S, Park B, Ko H, Jin M (2014) Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions. J Plant Biotechnol 41:116–122CrossRefGoogle Scholar
  37. Smykalova I, Vetrovcova M, Klima M, Machackova I, Griga M (2006) Efficiency of microspore culture for doubled haploid production in the breeding project “Czech winter rape”. Czech J Genet Plant Breed 42:58–71CrossRefGoogle Scholar
  38. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098PubMedCrossRefPubMedCentralGoogle Scholar
  39. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40(15):e115PubMedCrossRefGoogle Scholar
  40. Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039PubMedCrossRefGoogle Scholar
  41. Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF, Levy S, Batzer MA, Jorde LB (2009) Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19(9):1516–1526PubMedPubMedCentralCrossRefGoogle Scholar
  42. Yuan SX, Liu YM, Fang ZY, Yang LM, Zhuang M, Zhang YY, Sun PT (2011) Effect of combined cold pretreatment and heat shock on microspore cultures in broccoli. Plant Breed 130:80–85CrossRefGoogle Scholar
  43. Yuan S, Su Y, Liu Y, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Sun P (2015) Chromosome doubling of microspore-derived plants from cabbage (Brassica oleracea var. capitate L.) and broccoli (Brassica oleracea var. italic L.). Front Plant Sci 6:1118Google Scholar
  44. Zhang QJ, Gao LZ (2017) Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3 7(6):1875–1885.Google Scholar
  45. Zhang N, Zhao J, Lens F, de Visser J, Menamo T, Fang W, Xiao D, Bucher J, Basnet RK, Lin K, Cheng F, Wang X, Bonnema G (2014) Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European turnips (Brassica rapa. subsp. rapa). PLoS One 9:e114241. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang J, Cai C, Liu Z, Liu B (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5:50PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology 2019

Authors and Affiliations

  1. 1.Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea

Personalised recommendations