Plant Biotechnology Reports

, Volume 13, Issue 6, pp 625–633 | Cite as

An efficient and rapid Rhizobium rhizogenes root transformation protocol for Lemna minor

  • R. W. M. K. Kanchanamala
  • P. C. G. BandaranayakeEmail author
Original Article


Duckweeds belong to the smallest aquatic flowering plant family, Lemnaceae, and have a rapid doubling time, making this group an excellent system to study reduced morphology and wide environmental adaptability at the molecular level. Despite the availability of genomic and transcriptomic data for duckweed member, Lemna minor, lack of an efficient genetic transformation system has limited its use in plant molecular biology research. The present study reports an efficient and rapid Rhizobium rhizogenes-mediated root transformation system for L. minor. Two different factorial experiments were designed to test the effect of explant type, age, culture media and inoculation methods on transformation efficiency. Leaf and root tip cut explants were inoculated with R. rhizogenes strain MSU 440 harboring pBIN-YFP vector using yellow fluorescent protein (YFP) as a reporter gene for identification of transgenic roots. In addition, two different culture media, full MS and 0.25X Hoagland, and four different infection methods, solid culture, centrifugation, liquid culture and sonication, were compared. After 8 weeks, about 17% of the root tip-cut explants infected via the solid culture method and maintained in 0.25X Hoagland medium had YFP-expressing roots. These transgenic L. minor roots were morphologically similar to normal roots and PCR analysis demonstrated that the YFP-expressing roots were positive for the integration-expected rol genes. The described optimized root transformation procedure is a valuable tool for pursuing high-throughput gene characterization studies in L. minor.


Lemna Plant transformation Rhizobium rhizogenes Agrobacterium rhizogenes Duckweed Hairy roots 



We thank Dr. Denneal Jamison-McClung, Director of UC Davis Biotechnology Program for helpful comments provided for improving the manuscript. We would like to thank Dr. Bhagya Chandrasekara for her support on the molecular analysis and staff members of the Agricultural Biotechnology Center, University of Peradeniya for their support and encouragement throughout the research period.

Compliance with ethical standards

Conflict of Interest

Both authors, R.W.M.K. Kanchanamala and P.C.G. Bandaranayake declare that no conflicts of interest exist regarding the materials included in the manuscript.


  1. Appenroth KJ (2015) International steering committee on duckweed research and applications, useful methods 2: sterilization of duckweed. 3:90–138Google Scholar
  2. Appenroth K, Adamec L (2014) Specific turion yields of different clones of Spirodela polyrhiza depend on external phosphate thresholds. Plant Biol 17:125–129PubMedCrossRefGoogle Scholar
  3. Bandaranayake PCG, Yoder JI (2013) Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. Mol Plant Microbe Interact 26:575–584PubMedCrossRefGoogle Scholar
  4. Bandaranayake PCG, Yoder JI (2018) Factors affecting the efficiency of Rhizobium rhizogenes root transformation of the root parasitic plant Triphysaria versicolor and its host Arabidopsis thaliana. Plant Methods 14(1):61PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bandaranayake PCG, Filappova T, Tomilov A, Tomilova NB, Jamison-McClung D, Ngo Q, Inoue K, Yoder JI (2010) A single-electron reducing quinoneoxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria. Plant Cell 22:1404–1419PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12(22):8711–8721. CrossRefPubMedGoogle Scholar
  7. Bowker D, Duffield A, Denny P (1980) Methods for the isolation, sterilization and cultivation of Lemnaceae. Freshw Biol 10(4):385–388CrossRefGoogle Scholar
  8. Caicedo JR, van der Steennp NP, Arce O, Gijzen HJ (2000) Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodelapolyrrhiza). Water Res 34:3829–3835CrossRefGoogle Scholar
  9. Cao HX, Vu GTH, Wang W, Messing J, Schubert I (2015) Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol 17:120–124PubMedCrossRefGoogle Scholar
  10. Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol Mol Biol Plants 17:129–136PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chilton MD, Tepfer DA, Petit A, David C, Delbart FC, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434CrossRefGoogle Scholar
  12. Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, Díaz-Camino E, Santana O, Murillo E, Guillén G, Sánchez-Guevara N, Acosta J, Quinto C, Li D, Gresshoff PM, Sánchez F (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp. A tool for functional genomics. Mol Plant Microbe Interact 19:1385–1393PubMedCrossRefGoogle Scholar
  13. Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM (2007) Ammonium and nitrate uptake by the floating plant Landoltia punctate. Ann Bot 99:365–370PubMedPubMedCentralCrossRefGoogle Scholar
  14. Finer JJ, Trick HN (1997) Method for transforming plant tissue by sonication. U.S. Patent No. 5,693,512, 2 Dec 1997. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  15. Heide VDT, Roijackers RMM, Nes VEH, Peeters ETHM (2006) A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquat Bot 84:171–175CrossRefGoogle Scholar
  16. Horemans N, Van Hee M, Van Hoeck A, Saenen E, De Meutter T, Nauts R, Blust R, Vandenhove H (2015) Uranium and cadmium provoke different oxidative stress responses in Lemna minor. L Plant Biol 17:91–100PubMedCrossRefGoogle Scholar
  17. Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermumjaponicum. PLoS ONE 6:8Google Scholar
  18. Jenner HA, Janssen-Mommen JPM (1993) Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Arch Environ Contam Toxicol 25:3–11CrossRefGoogle Scholar
  19. Kasai M, Kanazawa A (2011) RNA silencing as a tool to uncover gene function and engineer novel traits in soybean. Breeding Sci 61:468–479CrossRefGoogle Scholar
  20. Kuster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochem 68:8–18CrossRefGoogle Scholar
  21. Lahive E, O'Halloran J, Jansen MAK (2015) A marriage of convenience; a simple food chain comprised of Lemna minor (L.) and Gammarus pulex (L.) to study the dietary transfer of zinc. Plant Biol. 17(Suppl 1):75–81. CrossRefPubMedGoogle Scholar
  22. Landolt E, Kandeler R (1987) Biosystematics investigation in the family of duckweeds (lemnacea). The family of the Lemnacea: a monographic study 2: Zurich: VeroffGeobotInst ETHGoogle Scholar
  23. Leng RA (1999) Duckweed—a tiny aquatic plant with enormous potential for agriculture and environment. FAO, RomeGoogle Scholar
  24. Li JR, Todd TC, Lee J, Trick HN (2011) Biotechnological application of functional genomics towards plant-parasitic nematode control. Plant Biotech J 9:936–944CrossRefGoogle Scholar
  25. Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicagotruncatula. J Exp Bot 55:983–992PubMedCrossRefGoogle Scholar
  26. Lonoce CR, Salem C, Marusic PV, Jutras A, Scaloni AM, Salzano S, Lucretti H, Steinkellner E, Benvenuto Donini M (2016) Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N-benthamiana hairy root cultures. Biotechnol J 11:1209–1220PubMedCrossRefGoogle Scholar
  27. Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O’Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68(14):1992–2003PubMedCrossRefGoogle Scholar
  28. Muradov N, Fidalgo B, Gujar AC, T-Raissi A, (2010) Pyrolysis of fast-growing aquatic biomass—Lemna minor (duckweed): characterization of pyrolysis products. Biores Technol 21:8424–8428CrossRefGoogle Scholar
  29. Muranaka T, Okada M, Yomo J, Kubota S, Oyama T (2015) Characterisation of circadian rhythms of various duckweeds. Plant Biology 1:66–74CrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol 15:473–496CrossRefGoogle Scholar
  31. Ono NN, Bandaranayake PCG, Tian L (2012) Establishment of pomegranate (Punica granatum) hairy root cultures for genetic interrogation of the hydrolyzable tannin biosynthetic pathway. Planta 236:931–941PubMedCrossRefGoogle Scholar
  32. Oron G, Wildschut LR, Porath D (1985) Waste water recycling by duckweed for protein production and Effluent renovation. Water Sci Technol 17(4–5):803–817. CrossRefGoogle Scholar
  33. Oscarson P, Ingemarsson B, Ugglas M, Larsson CM (1988) Characteristics of NO 3 uptake in Lemna and Pisum. Plant Soil 111:203–205CrossRefGoogle Scholar
  34. Piqueras A, Albuquerque N, Folta KM (2010) Explants used for the generation of transgenic plants. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer Berlin Heidelberg 1(2):31–56Google Scholar
  35. Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotech J 14:1381–1393CrossRefGoogle Scholar
  36. Porath D, Pollock J (1982) Ammonia stripping by duckweed and its feasibility in circulating aquaculture. Aquat Bot 13:125–131CrossRefGoogle Scholar
  37. Ron M, Kajala K, Pauluzzi G, Wang DX, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using agrobacterium Rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–U442PubMedPubMedCentralCrossRefGoogle Scholar
  38. Tabou TT, Baya DT, Eyul’anki DM, Vasel JL (2014) Monitoring the influence of light intensity on the growth and mortality of duckweed (Lemna minor) through digital images processing. Biotechnol Agron Soc Environ 18:37–48Google Scholar
  39. Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967PubMedCrossRefGoogle Scholar
  40. Thomson EL, Dennis JJ (2013) Common Duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PloS one 8(11):e80102PubMedPubMedCentralCrossRefGoogle Scholar
  41. Thu P, Huong P, Tien V, Ham L, Khanh T (2015) Regeneration and transformation of gene encoding the Hemagglutinin antigen of the H5N1 virus in frond of duckweed (Spirodela polyrhiza L). J Agricult Stud 3(1):48CrossRefGoogle Scholar
  42. Tian L (2015) Using hairy roots for production of valuable plant secondary metabolites. Filaments Bioprocesses 149:275–324CrossRefGoogle Scholar
  43. Tomilov AA, Tomilova NB, Yoder JI (2006) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–1071PubMedCrossRefGoogle Scholar
  44. Triplett B, Moss S, Bland J, Dowd M (2008) Induction of hairy root cultures from Gossypium hirsutum and Gossypium barbadense to produce gossypol and related compounds. Vitro Cell Dev Biol Plant 44:508–517CrossRefGoogle Scholar
  45. Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells: Cointegrate and binary vector systems. Plant Molecular Biology Manual, S Gelvin, R Schilperoorteds (Dordrecht, The Netherlands: Kluwer) 1–19CrossRefGoogle Scholar
  46. Wang W, Messing J (2011) High-throughput sequencing of three Lemnoideae (Duckweeds) chloroplast genomes from total DNA. PLoS ONE 6(9):e24670PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wang W, Messing J (2015) Status of Duckweed genomics and transcriptomics. Plant Biol 17:10–15PubMedCrossRefGoogle Scholar
  48. Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894PubMedCrossRefGoogle Scholar
  49. Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311PubMedPubMedCentralCrossRefGoogle Scholar
  50. Winans SC (1992) 2-Way chemical signaling in Agrobacterium—plant interactions. Microbiol Rev 56:12–31PubMedPubMedCentralGoogle Scholar
  51. Yamamoto YT, Rajbhandari N, Lin X, Bergmann BENA, Nishhimura Y, Carolina N (2001) Genetic transformation of duckweed Lemnagibba andLemna minor. vitro Cell DevBiol Plant 37:349–353CrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology 2019

Authors and Affiliations

  1. 1.Agricultural Biotechnology Centre, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka

Personalised recommendations