Plant Biotechnology Reports

, Volume 11, Issue 5, pp 271–287 | Cite as

Expression in rice of an autoactive variant of Medicago truncatula DMI3, the Ca+2/calmodulin-dependent protein kinase from the common symbiotic pathway modifies root transcriptome and improves mycorrhizal colonization

  • Marlene Ortiz-BerrocalEmail author
  • Luis Lozano
  • Alejandro Sanchez-Flores
  • Noreide Nava
  • Georgina Hernández
  • Pallavolu M. ReddyEmail author
Original Article


Rice is the principle staple food for more than half of humankind. Frequently, productivity of rice is affected by low nitrogen in the soil and hence, for enhanced rice production it heavily relies on synthetic nitrogen fertilizers that beget economic and ecological costs. In this context, the interest in transferring legume-like biological nitrogen fixation capability to rice has increased lately. The rice-arbuscular mycorrhizal (AM) symbiosis is mediated by genes that are orthologous to legume-genes known to be essential constituents of the common symbiotic pathway (CSP) that facilitates the establishment of both rhizobial nitrogen fixation- and AM-symbioses in legumes. Particularly, DMI3 (Ca+2/calmodulin-dependent serine/threonine protein kinase, CCaMK), a component of the CSP, was found to play a paramount role in promoting the development of both types of symbioses. In fact, expression of autoactive version of DMI3 was shown to be sufficient to trigger downstream developmental processes leading to the induction of spontaneous nodulation in the absence of rhizobia. Hence, in the present investigation, we expressed in transgenic rice a gain-of-function Medicago truncatula DMI3 T271D gene (gofMtDMI3) and assessed if legume-like symbiotic responses can be mimicked in rice roots. Ectopic expression of gofMtDMI3 in common bean induced spontaneous nodulation in the roots in the absence of rhizobia, but in rice plants it did not produce any such legume-like nodular manifestations. Conversely, the expression of gofMtDMI3 supported elevated AM colonization in rice roots that could improve plant nutrition/growth. In addition, gofMtDMI3 expression induced higher transcript levels of the CSP orthologues OsDMI3, OsIPD3 and OsNSP1, as well as triggered changes in the expression of several genes involved in biotic and abiotic stress responses. Our results with gofMtDMI3 lay the basis for the potential development of a biotechnological approach towards improvement of rice production.


Rice Legumes Common symbiotic pathway (CSP) Medicago truncatula DMI3 (CCaMK) AM symbiosis Transcriptome analysis 



M Ortiz-Berrocal is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received a fellowship (No. 390781) from CONACYT. This research was supported by the grants from DGAPA (IN206208) and CONACyT (128135) to PM Reddy. We gratefully acknowledge Dr. Tzvi Tzfira (University of Michigan, Ann Arbor, USA) for the kind gift of SAT and RCS2-HPT vector systems and QFB Lourdes Martínez Aguilar (Centro de Ciencias Genómicas-UNAM) for her technical assistance.

Supplementary material

11816_2017_449_MOESM1_ESM.pdf (101 kb)
Supplementary material 1 (PDF 101 kb)
11816_2017_449_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)
11816_2017_449_MOESM3_ESM.xlsx (94 kb)
Supplementary material 3 (XLSX 94 kb)


  1. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827. doi: 10.1038/nature03608 CrossRefPubMedGoogle Scholar
  2. Alexa A, Rahnenführer J (2016) topGO: enrichment analysis for gene ontology. R package version 2.28.0Google Scholar
  3. Anders S, Huber W, Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M, Mortazavi A, Williams B, McCue K, Schaeffer L, Wold B, Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith O, He A, Marra M, Snyder M, Jones S, Licatalosi D, Mele A, Fak J, Ule J, Kayikci M, Chi S, Clark T, Schweitzer A, Blume J, Wang X, Darnell J, Darnell R, Smith A, Heisler L, Mellor J, Kaper F, Thompson M, Chee M, Roth F, Giaever G, Nislow C, Marioni J, Mason C, Mane S, Stephens M, Gilad Y, Wang L, Feng Z, Wang X, Wang X, Zhang X, Robinson M, Smyth G, Whitaker L, Robinson M, McCarthy D, Smyth G, Robinson M, Smyth G, Cameron A, Trivedi P, Robinson M, Oshlack A, Loader C, McCullagh P, Nelder J, Agresti A, Engström P, Tommei D, Stricker S, Smith A, Pollard S, Bertone P, Morrissy A, Morin R, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra M, Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak S, Habegger L, Rozowsky J, Shi M, Urban A, Hong M, Karczewski K, Huber W, Weissman S, Gerstein M, Korbel J, Snyder M, Benjamini Y, Hochberg Y, Bullard J, Purdom E, Hansen K, Dudoit S, Bloom J, Khan Z, Kruglyak L, Singh M, Caudy A, Smyth G, Smyth G, Lönnstedt I, Speed T, Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney L, Yang J, Zhang J, Bliss C, Fisher R, Clark S, Perry J, Lawless J, Saha K, Paul S, Langmead B, Trapnell C, Pop M, Salzberg S (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi: 10.1186/gb-2010-11-10-r106 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aparicio-Fabre R, Guillén G, Loredo M, Arellano J, Valdés-López O, Ramírez M, Iñiguez LP, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G (2013) Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC Plant Biol 13:26. doi: 10.1186/1471-2229-13-26 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, Consortium GO (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. doi: 10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banba M, Gutjahr C, Miyao A, Hirochika H, Paszkowski U, Kouchi H, Imaizumi-Anraku H (2008) Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol 49:1659–1671. doi: 10.1093/pcp/pcn153 CrossRefPubMedGoogle Scholar
  7. Beatty PH, Good AG (2011) Future prospects for Cereals. Science 333:416–418. doi: 10.1126/science.1209467 CrossRefPubMedGoogle Scholar
  8. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1–13. doi: 10.3389/fmicb.2015.01559 CrossRefGoogle Scholar
  9. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247. doi: 10.1371/journal.pbio.0040226 CrossRefGoogle Scholar
  10. Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant J 63:229–240. doi: 10.1111/j.1365-313X.2010.04232.x CrossRefPubMedGoogle Scholar
  11. Boisson-Dernier A, Andriankaja A, Chabaud M, Niebel A, Journet EP, Barker DG, de Carvalho-Niebel F (2005) MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence. Mol Plant Microbe Interact 18:1269–1276. doi: 10.1094/MPMI-18-1269 CrossRefPubMedGoogle Scholar
  12. Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080. doi: 10.1104/pp.112.197269 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897. doi: 10.1016/S0031-9422(01)00117-0 CrossRefPubMedGoogle Scholar
  14. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Bâ A, Gillis M, De Lajudie P, Chaintreuil M, Ba A (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447. doi: 10.1128/AEM.66.12.5437-5447.2000.Updated CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen C, Gao M, Liu J, Zhu H (2007) Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiol 145:1619–1628. doi: 10.1104/pp.107.109876 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen C, Ané JM, Zhu H (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol 180:311–315. doi: 10.1111/j.1469-8137.2008.02612.x CrossRefPubMedGoogle Scholar
  17. Chen C, Fan C, Gao M, Zhu H (2009) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol 149:306–317. doi: 10.1104/pp.108.131540 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chung S-M, Frankman EL, Tzfira T (2005) A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10:357–361. doi: 10.1016/j.tplants.2005.06.001 CrossRefPubMedGoogle Scholar
  19. Dao TH, Linthorst H, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10:397–412. doi: 10.1007/s11101-011-9211-7 CrossRefPubMedPubMedCentralGoogle Scholar
  20. de Vrieze J (2015) The littlest farmhands. Science 349:680–683. doi: 10.1126/science.349.6249.680 CrossRefPubMedGoogle Scholar
  21. Delaux PM, Radhakrishnan G, Oldroyd G (2015) Tracing the evolutionary path to nitrogen-fixing crops. Curr Opin Plant Biol 26:95–99. doi: 10.1016/j.pbi.2015.06.003 CrossRefPubMedGoogle Scholar
  22. Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21CrossRefGoogle Scholar
  23. Denancé N, Szurek B, Noël LD (2014) Emerging functions of nodulin-like proteins in non-nodulating plant species. Plant Cell Physiol 55:469–474. doi: 10.1093/pcp/pct198 CrossRefPubMedGoogle Scholar
  24. Dénarié J, Debellé F, Promé J-C (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  25. Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J-E, Guillén G, Díaz-Camino C, Campos F, Quinto C, Gresshoff PM, Sanchez F (2007) Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819–1824. doi: 10.1038/nprot.2007.259 CrossRefPubMedGoogle Scholar
  26. Gelli M, Duo Y, Reddy Konda A, Zhang C, Holding D, Dweikat I (2014) Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genom 15:179. doi: 10.1016/j.cbpc.2009.12.007 CrossRefGoogle Scholar
  27. Giovannetti M, Mari A, Novero M, Bonfante P (2015) Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. Front Plant Sci 6:480. doi: 10.3389/fpls.2015.00480 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Giraud E, Hannibal L, Fardoux J, Verméglio A, Dreyfus B (2000) Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc Natl Acad Sci USA 97:14795–14800. doi: 10.1073/pnas.250484097 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre J-C, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang W-S, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadowsky M (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312. doi: 10.1126/science.1139548 CrossRefPubMedGoogle Scholar
  30. Gleason C, Chaudhuri S, Yang TB, Munoz A, Poovaiah BW, Oldroyd GED (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:1149–1152. doi: 10.1038/Nature04812 CrossRefPubMedGoogle Scholar
  31. Godfroy O, Debellé F, Timmers T, Rosenberg C (2006) A rice calcium- and calmodulin-dependent protein kinase restores nodulation to a legume mutant. Mol Plant Microbe Interact 19:495–501. doi: 10.1094/MPMI-19-0495 CrossRefPubMedGoogle Scholar
  32. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194. doi: 10.1038/nature07271 CrossRefPubMedGoogle Scholar
  33. Groten K, Nawaz A, Nguyen NHT, Santhanam R, Baldwin IT (2015) Silencing a key gene of the common symbiosis pathway in Nicotiana attenuata specifically impairs arbuscular mycorrhizal infection without influencing the root-associated microbiome or plant growth. Plant Cell Environ 38:2398–2416. doi: 10.1111/pce.12561 CrossRefPubMedGoogle Scholar
  34. Gutiérrez RA (2012) Systems biology for enhanced plant nitrogen nutrition. Science 336:1673–1675. doi: 10.1126/science.1217620 CrossRefPubMedGoogle Scholar
  35. Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005. doi: 10.1105/tpc.108.062414 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920. doi: 10.1111/j.1365-313X.2011.04842.x CrossRefPubMedGoogle Scholar
  37. Hakeem KR, Chandna R, Ahmad A, Qureshi MI, Iqbal M (2012) Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Appl Biochem Biotechnol 168:834–850. doi: 10.1007/s12010-012-9823-4 CrossRefPubMedGoogle Scholar
  38. Hayashi T, Banba M, Shimoda Y, Kouchi H, Hayashi M, Imaizumi-Anraku H (2010) A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. Plant J 63:141–154. doi: 10.1111/j.1365-313X.2010.04228.x PubMedPubMedCentralGoogle Scholar
  39. Hirsch S, Kim J, Muñoz A, Heckmann AB, Downie JA, Oldroyd GED (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21:545–557. doi: 10.1105/tpc.108.064501 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ivleva NB, Groat J, Staub JM, Stephens M (2016) Expression of active subunit of nitrogenase via integration into plant organelle genome. PLoS One 11:1–13. doi: 10.1371/journal.pone.0160951 CrossRefGoogle Scholar
  41. Jach G, Binot E, Frings S, Luxa K, Schell J (2001) Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. Plant J 28:483–491. doi: 10.1046/j.1365-313X.2001.01153.x CrossRefPubMedGoogle Scholar
  42. Jang I-C, Choi W-B, Lee K-H, Song SI, Nahm BH, Kim J-K (2002) High-level and ubiquitous expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiol 129:1473–1481. doi: 10.1104/pp.002261.1 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jefferson RA, Burgess SM, Hirsh D (1986) Beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451. doi: 10.1073/pnas.83.22.8447 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y) 6:4. doi: 10.1186/1939-8433-6-4 Google Scholar
  45. Ladha J, Reddy P (1995) Extension of nitrogen fixation to rice—necessity and possibilities. GeoJournal 35:363–372CrossRefGoogle Scholar
  46. Ladha J, Reddy P (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167. doi: 10.1023/A:1024175307238 CrossRefGoogle Scholar
  47. Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi: 10.1186/gb-2009-10-3-r25 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP (2012) The microRNA miR171 h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72:512–522. doi: 10.1111/j.1365-313X.2012.05099.x CrossRefPubMedGoogle Scholar
  49. Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet E-P, Ané J-M, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca+2 and calmodulin- dependent protein kinase required. Science 303:1361–1364. doi: 10.1126/science.1093038 CrossRefPubMedGoogle Scholar
  50. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979. doi: 10.1016/j.jplph.2006.07.006 CrossRefPubMedGoogle Scholar
  51. Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W-C, Hooiveld GJEJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865. doi: 10.1105/tpc.111.089771 CrossRefPubMedPubMedCentralGoogle Scholar
  52. López-Torrejón G, Jiménez-Vicente E, Buesa JM, Hernandez JA, Verma HK, Rubio LM (2016) Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nat Commun 7:11426. doi: 10.1038/ncomms11426 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10. doi: 10.1038/ncomms1009 CrossRefPubMedGoogle Scholar
  54. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63. doi: 10.1038/nature09622 CrossRefPubMedGoogle Scholar
  55. Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86. doi: 10.1016/j.tplants.2008.11.009 CrossRefPubMedGoogle Scholar
  56. Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:0497–0506. doi: 10.1371/journal.pbio.0060068 CrossRefGoogle Scholar
  57. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular- arbuscular mycorrhizal fungi. New Phytol 115:495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x CrossRefGoogle Scholar
  58. Molouba F, Lorquin J, Willems A, Hoste B, Giraud E, Dreyfus B, Gillis M, De Lajudie P, Masson-Boivin C (1999) Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. Appl Environ Microbiol 65:3084–3094PubMedPubMedCentralGoogle Scholar
  59. Mornico D, Miché L, Béna G, Nouwen N, Verméglio A, Vallenet D, Smith AAT, Giraud E, Médigue C, Moulin L (2012) Comparative genomics of Aeschynomene symbionts: insights into the ecological lifestyle of nod-independent photosynthetic bradyrhizobia. Genes 3:35–61. doi: 10.3390/genes3010035 CrossRefGoogle Scholar
  60. Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu M-H, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané J-M, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710. doi: 10.1128/AEM.01055-16.Editor CrossRefPubMedPubMedCentralGoogle Scholar
  61. Narsai R, Ivanova A, Ng S, Whelan J (2010) Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol 10:56. doi: 10.1186/1471-2229-10-56 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a {beta}-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813Google Scholar
  63. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263. doi: 10.1038/nrmicro2990 CrossRefPubMedGoogle Scholar
  64. Petti C, Khan M, Doohan F (2010) Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens. Funct Integr Genom 10:619–627. doi: 10.1007/s10142-010-0177-0 CrossRefGoogle Scholar
  65. Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, Gutjahr C (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26:987–998. doi: 10.1016/j.cub.2016.01.069 CrossRefPubMedGoogle Scholar
  66. Reddy P, James E, Ladha J (2002) Nitrogen Fixation in Rice. In: Leigh GJ (ed) Nitrogen fixation at the millenium. Elsevier, Amsterdam, pp 421–445CrossRefGoogle Scholar
  67. Reddy P, Rendón-Anaya M, Soto del Río M, Khandual S (2007) Flavonoids as signaling molecules and regulators of root nodule development. Dyn Soil Dyn Plant 1(2):83–94Google Scholar
  68. Reddy PM, Altúzar-Molina AR, Ortiz-Berrocal M, Medina-Andrés R, López-Sámano M, Martínez L (2013) Predisposition and redesigning of genetic networks of rice for accommodating nitrogen-fixing rhizobial symbiosis. In: Muralidharan K, Siddiq EA (eds) International dialogue on perception and prospects of designer rice. Society for Advancement of Rice Research, India, pp 245–257Google Scholar
  69. Rogers C, Oldroyd GED (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65:1939–1946. doi: 10.1093/jxb/eru098 CrossRefPubMedGoogle Scholar
  70. Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH, Westphall MS, Sussman MR, Ané J-M, Coon JJ (2012) Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cell Proteom 11:724–744. doi: 10.1074/mcp.M112.019208 CrossRefGoogle Scholar
  71. Samac DA, Graham MA (2007) Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. Plant Physiol 144:582–587. doi: 10.1104/pp.107.096503 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJGM, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466. doi: 10.1104/pp.107.097980 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Singh S, Parniske M (2012) Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol 15:444–453. doi: 10.1016/j.pbi.2012.04.002 CrossRefPubMedGoogle Scholar
  74. Sreevidya VS, Hernandez-Oane RJ, So RB, Sullia SB, Stacey G, Ladha JK, Reddy PM (2005) Expression of the legume symbiotic lectin genes psl and gs52 promotes rhizobial colonization of roots in rice. Plant Sci 169:726–736. doi: 10.1016/j.plantsci.2005.05.024 CrossRefGoogle Scholar
  75. Sreevidya VS, Srinivasa Rao C, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969. doi: 10.1093/jxb/erj143 CrossRefPubMedGoogle Scholar
  76. Stokstad E (2016) The nitrogen fix. Science 353:1225–1227. doi: 10.1126/science.353.6305.1225 CrossRefPubMedGoogle Scholar
  77. Takeda N, Maekawa T, Hayashi M (2012) Nuclear-localized and deregulated calcium- and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus. Plant Cell 24:810–822. doi: 10.1105/tpc.111.091827 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939. doi: 10.1111/j.1365-313X.2004.02016.x CrossRefPubMedGoogle Scholar
  79. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304. doi: 10.1016/j.pbi.2006.03.014 CrossRefPubMedGoogle Scholar
  80. Tirichine L, James EK, Sandal N, Stougaard J (2006) Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol Plant-Microbe Interact 19:373–382. doi: 10.1094/MPMI-19-0373 CrossRefPubMedGoogle Scholar
  81. Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976. doi: 10.1111/j.1365-313X.2006.02836.x CrossRefPubMedGoogle Scholar
  82. Van Damme EJM, Barre A, Rougé P, Peumans WJ (2004) Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9:484–489. doi: 10.1016/j.tplants.2004.08.003 CrossRefPubMedGoogle Scholar
  83. Venkateshwaran M, Volkening JD, Sussman MR, Ané J-M (2013) Symbiosis and the social network of higher plants. Curr Opin Plant Biol 16:118–127. doi: 10.1016/j.pbi.2012.11.007 CrossRefPubMedGoogle Scholar
  84. Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U (2016) Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular poaceae-specific proteins. Mol Plant 9:514–527. doi: 10.1016/j.molp.2015.12.009 CrossRefPubMedGoogle Scholar
  85. Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 5:1–9. doi: 10.1038/ncomms5087 CrossRefGoogle Scholar
  86. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. doi: 10.1104/pp.126.2.485 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Xie Z, Zhang ZL, Xiaolu Z, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189. doi: 10.1104/pp.104.054312 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yokota K, Soyano T, Kouchi H, Hayashi M (2010) Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice. Plant Cell Physiol 51:1436–1442. doi: 10.1093/pcp/pcq124 CrossRefPubMedGoogle Scholar
  89. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological Studies of Rice. International Rice Research Institute, Los Baños, pp 61–64Google Scholar
  90. Yuan M, Wang S (2013) Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant 6:665–674. doi: 10.1093/mp/sst035 CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology and Springer Japan KK 2017

Authors and Affiliations

  1. 1.Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM)CuernavacaMexico
  2. 2.Unidad Universitaria de Secuenciación Masiva y BioinformáticaInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM)CuernavacaMéxico
  3. 3.Departamento de Biología Molecular de PlantasInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM)CuernavacaMéxico
  4. 4.The Energy and Resources Institute, IHCNew DelhiIndia

Personalised recommendations