Advertisement

Plant Biotechnology Reports

, Volume 10, Issue 6, pp 327–343 | Cite as

Genome editing for targeted improvement of plants

  • Kiran Khandagale
  • Altafhusain NadafEmail author
Review Article

Abstract

Recent advances in gene/genome editing technologies, such as engineered meganucleases (EMNs), zinc finger nucleases (ZFNs), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced palindromic repeats (CRISPR/Cas9) allowed researchers to precisely modify or mutate genes. These genome editing tools make double-strand breaks (DSB) in DNA and then repair it by employing error-prone non-homologous end joining (NHEJ) or homology directed repair (HDR) mechanism which leads to mutation in specific location in genome. Since these editing techniques are simple to use, highly efficient and specific as compared to earlier mutation methods, their use in plant biology research is increasing rapidly to enhance biotic and abiotic stress tolerance, increased nutritional value and new trait development. Here, we review the applications of EMNs, ZFNs, TALENs and CRISPR/Cas9 in various plants (cereals, vegetable, oil crops and fruits), comparison of genome editing methods and their biosafety regulations.

Keywords

ZFN TALEN CRISPR/Cas9 Meganuclease Biosafety 

Notes

Acknowledgements

KK acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi, India (Sanction No. 09/137/(0541)/2012-EMR-1) for the award of senior research fellowship.

References

  1. Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R et al (2013) Trait stacking via targeted genome editing. Plant Biotech J 11:1126–1134CrossRefGoogle Scholar
  2. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659PubMedCrossRefGoogle Scholar
  3. Ali Z, Abul-faraj A, Piatek M, Mahfouz M (2015a) Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav. doi: 10.1080/15592324.2015.1044191 PubMedPubMedCentralGoogle Scholar
  4. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015b) CRISPR/Cas9- mediated viral interference in plants. Genome Biol 16:238. doi: 10.1186/s13059-015-0799-6 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aouida M, Piatek MJ, Bangarusamy DK, Mahfouz MM (2014) Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr Genet 60:61–74PubMedCrossRefGoogle Scholar
  6. Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20(3):145–149PubMedCrossRefGoogle Scholar
  7. Araki M, Nojima K, Ishii T (2014) Caution required for handling genome editing technology. Trends Biotechnol 32(5):234–237PubMedCrossRefGoogle Scholar
  8. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65PubMedCrossRefGoogle Scholar
  9. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM et al (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants. doi: 10.1038/nplants.2015.145 Google Scholar
  11. Barrangou R (2012) RNA-mediated programmable DNA cleavage. Nat Biotechnol 30:836–838PubMedCrossRefGoogle Scholar
  12. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712PubMedCrossRefGoogle Scholar
  13. Becker M (2012) Method of the year 2011. Nat Methods. doi: 10.1038/nmeth.1852 Google Scholar
  14. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA-binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
  15. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846PubMedCrossRefGoogle Scholar
  16. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotech Adv 33:41–52CrossRefGoogle Scholar
  17. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F, Elsaesser J, Lahaye T, Leonhardt H (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40:5368–5377PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM et al (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709PubMedCrossRefGoogle Scholar
  20. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One. doi: 10.1371/journal.pone.0136064 Google Scholar
  21. Caldwell D, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150PubMedCrossRefGoogle Scholar
  22. Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK (2014) Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci. doi: 10.3389/fpls.2014.00302 PubMedPubMedCentralGoogle Scholar
  23. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carroll D, Morton JJ, Beumer KJ, Segal DJ (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1(3):1329–1341PubMedCrossRefGoogle Scholar
  25. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. doi: 10.1093/nar/gkr218 PubMedGoogle Scholar
  26. Cermak T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol. doi: 10.1186/s13059-015-0796-9 PubMedPubMedCentralGoogle Scholar
  27. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. doi: 10.1111/mpp.12375 PubMedGoogle Scholar
  28. Chaparro-Garcia A, Kamoun S, Nekrasov V (2015) Boosting plant immunity with CRISPR/Cas. Genome Biol. doi: 10.1186/s13059-015-0829-4 PubMedPubMedCentralGoogle Scholar
  29. Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotech J. doi: 10.1111/pbi.12344 Google Scholar
  30. Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotech J 10:913–924CrossRefGoogle Scholar
  31. Chen K, Shan Q, Gao C (2014) An efficient TALEN mutagenesis system in rice. Methods 69:2–8PubMedCrossRefGoogle Scholar
  32. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141PubMedPubMedCentralCrossRefGoogle Scholar
  33. Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 3:1697–1705CrossRefGoogle Scholar
  34. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotech J. doi: 10.1111/pbi.12370 Google Scholar
  35. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cristea S, Freyvert Y, Santiago Y, Holmes MC, Urnov FD, Gregory PD et al (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng 110:871–880PubMedCrossRefGoogle Scholar
  37. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473PubMedPubMedCentralCrossRefGoogle Scholar
  38. Curtin SJ, Anderson JE, Starker CG, Baltes NJ, Mani D, Voytas DF, Stupar RM (2013) Targeted mutagenesis for functional analysis of gene duplication in legumes. Methods Mol Biol 1069:25–42PubMedCrossRefGoogle Scholar
  39. D’Halluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Van Den Brande I, Pennewaert A, D’Hont K, Bossut M, Jantz D, Ruiter R, Broadhvest J (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotech J 11:933–941CrossRefGoogle Scholar
  40. De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304PubMedCrossRefGoogle Scholar
  41. de Pater S, Pinas JE, Hooykaas PJ, Van der Zaal BJ (2013) ZFN mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotech J 11:510–515CrossRefGoogle Scholar
  42. Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander L (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J 76:888–899PubMedCrossRefGoogle Scholar
  43. Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2015) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotech. doi: 10.1016/j.jbiotec.2015.11.005 Google Scholar
  44. EFSA Panel on Genetically Modified Organisms (2012) Scientific opinion addressing the safety assessment of plants developed using zinc finger nuclease 3 and other site-directed nucleases with similar function. EFSA J 10:2943CrossRefGoogle Scholar
  45. Endo M, Mikami M, Toki S (2015) Multi gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41–47PubMedCrossRefGoogle Scholar
  46. Endo M, Mikami M, Toki S (2016) Bi-allelic gene targeting in rice. Plant Physiol. doi: 10.1104/pp.15.01663 PubMedGoogle Scholar
  47. Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68:929–937PubMedCrossRefGoogle Scholar
  48. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep. doi: 10.1038/srep12217 Google Scholar
  49. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359. doi: 10.1111/tpj.12554 PubMedCrossRefGoogle Scholar
  50. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232PubMedPubMedCentralCrossRefGoogle Scholar
  51. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu JK (2014) Multi-generation analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas induced gene modifications in Arabidopsis. PNAS 111:4632–4637PubMedPubMedCentralCrossRefGoogle Scholar
  52. Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics 43:37–43PubMedCrossRefGoogle Scholar
  53. Forner J, Pfeiffer A, Langenecker T, Manavella P, Lohmann JU (2015) Germline- transmitted genome editing in Arabidopsis thaliana using TAL-Effector-Nucleases. PLoS One. doi: 10.1371/journal.pone.0121056 Google Scholar
  54. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187PubMedCrossRefGoogle Scholar
  55. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015a) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110PubMedCrossRefGoogle Scholar
  56. Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015b) Auxin binding protein 1 (ABP1) is not required for either auxin signalling or Arabidopsis development. PNAS 112:2275–2280PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gupta M, DeKelver RC, Palta A, Clifford C, Gopalan S, Miller JC, Novak S, Desloover D et al (2012) Transcriptional activation of Brassica napus beta-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotech J 10:783–791CrossRefGoogle Scholar
  58. Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J (2014) True-breeding targeted gene knock-out in barley using designer TALE nuclease in haploid cells. PLoS One. doi: 10.1371/journal.pone.0092046 PubMedPubMedCentralGoogle Scholar
  59. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742–752PubMedCrossRefGoogle Scholar
  60. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotech J 12:934–940CrossRefGoogle Scholar
  61. Hinge V, Patil H, Nadaf AB (2015) Comparative characterization of aroma volatiles and related gene expression analysis at vegetative and mature stages in basmati and non-basmati rice (Oryza sativa L.) cultivars. Appl. Biochem. doi: 10.1007/s12010-015-1898-2 Google Scholar
  62. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241:271–284. doi: 10.1007/s00425-014-2180-5 PubMedCrossRefGoogle Scholar
  63. Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: A tool to circumscribe cotton leaf curl disease. Front Plant Sci. doi: 10.3389/fpls.2016.00475 Google Scholar
  64. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in E coli and identification of the gene product. J Bacteriol 169:5429–5433PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2015.09.117 Google Scholar
  66. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. doi: 10.1186/s12896-015-0131-2 PubMedPubMedCentralGoogle Scholar
  67. Jansen R, Embden JDAV, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575PubMedCrossRefGoogle Scholar
  68. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. doi: 10.1038/nplants.2015.144 PubMedGoogle Scholar
  69. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One. doi: 10.1371/journal.pone.0093806 Google Scholar
  70. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. doi: 10.1093/nar/gkt780 Google Scholar
  71. Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One. doi: 10.1371/journal.pone.0099225 Google Scholar
  72. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  73. Johnson RA, Gurevich V, Filler S, Samach A, Levy AA (2015) Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Mol Biol 87:143–156PubMedCrossRefGoogle Scholar
  74. Kanchiswamy CN (2016) DNA-free genome editing methods for targeted crop improvement. Plant Cell Rep. doi: 10.1007/s00299-016-1982-2 PubMedGoogle Scholar
  75. Kanchiswamy CN, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33(2):62–63CrossRefGoogle Scholar
  76. Khandagale KS, Zanan RL, Nadaf AB (2016) RNA interference and targeted genome editing for improvement of rice (Oryza sativa L.). Israel J Plant Sci (communicated)Google Scholar
  77. Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci. doi: 10.3389/fpls.2016.00506 PubMedPubMedCentralGoogle Scholar
  78. Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J 19:5562–5566PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. doi: 10.1186/s13059-015-0826-7 PubMedPubMedCentralGoogle Scholar
  80. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedCrossRefGoogle Scholar
  82. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li T, Liu B, Chen CY, Yang B (2014) TALEN utilization in rice genome modifications. Methods 69:9–16PubMedCrossRefGoogle Scholar
  84. Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in Soybean. Plant Physiol. doi: 10.1104/pp.15.00783 Google Scholar
  85. Li Q, Zhang D, Chen M, Liang W, Wei J, Qi Y, Yuan Z (2016) Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genomics. doi: 10.1016/j.jgg.2016.04.011 PubMedCentralGoogle Scholar
  86. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68PubMedCrossRefGoogle Scholar
  87. Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9 based plant genome editing. Sci Rep. doi: 10.1038/srep21451 Google Scholar
  88. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. PNAS 102:2232–2237PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE (2014) Targeted mutagenesis of the tomato PROCERA gene using TALENs. Plant Physiol 166:1288–1291PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. doi: 10.1104/pp.15.00636 PubMedPubMedCentralGoogle Scholar
  91. Ma XL, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. doi: 10.1016/j.molp.2015.04.007 Google Scholar
  92. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA-binding specificity creates double-strand breaks. PNAS 108:2623–2628PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotech J 12:1006–1014CrossRefGoogle Scholar
  95. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845PubMedPubMedCentralCrossRefGoogle Scholar
  96. Marta V, Joan MB, Asun F, Pello Z, Jose B, Antonio G, Diego O (2016) A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods. doi: 10.1186/s13007-016-0101-2 Google Scholar
  97. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via lox-P site excision. Plant Physiol 164:537–547PubMedCrossRefGoogle Scholar
  98. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457PubMedCrossRefGoogle Scholar
  99. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mikami M, Toki S, Endo M (2015a) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol. doi: 10.1007/s11103-015-0342-x PubMedPubMedCentralGoogle Scholar
  101. Mikami M, Toki S, Endo M (2015b) Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep. doi: 10.1007/s00299-015-1826-5 PubMedGoogle Scholar
  102. Mojica FJM, Ferrer C, Juez G, Rodrı´guez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17:85–93PubMedCrossRefGoogle Scholar
  103. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501PubMedCrossRefGoogle Scholar
  104. Nanto K, Sato K, Katayama Y, Ebinuma H (2009) Expression of a transgene exchanged by the recombinase-mediated cassette exchange (RMCE) method in plants. Plant Cell Rep 28:777–785PubMedCrossRefGoogle Scholar
  105. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693PubMedCrossRefGoogle Scholar
  106. Nicolia A, Proux-Wera E, Ahman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24PubMedCrossRefGoogle Scholar
  107. Ning YQ, Ma ZY, Huang HW, Mo H, Zhao TT, Li L, Cai T, Chen S, Ma L, He XJ (2015) Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res 43:1469–1484PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Sci Rep 6:31481. doi: 10.1038/srep31481 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. PNAS 107:12034–12039PubMedPubMedCentralCrossRefGoogle Scholar
  110. Peer R, Rivlin G, Golobovitch S, Lapidot M, Gal-On A, Vainstein A, Tzfira T, Flaishman MA (2015) Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 241:941–951PubMedCrossRefGoogle Scholar
  111. Petolino JF, Worden A, Curlee K, Connell J, Moynahan TL, Larsen C, Russell S (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73:617–628PubMedCrossRefGoogle Scholar
  112. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589PubMedCrossRefGoogle Scholar
  113. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973PubMedCrossRefGoogle Scholar
  114. Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant-cells is enhanced by in vivo induction of double-strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21:5034–5040PubMedPubMedCentralCrossRefGoogle Scholar
  115. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013a) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi: 10.1016/j.cell.2013.02.022 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD, Reyon D, Joung JK, Voytas DF (2013b) Targeted deletion and inversion of tandomly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda) 3:1707–1715PubMedCentralCrossRefGoogle Scholar
  117. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308PubMedPubMedCentralCrossRefGoogle Scholar
  118. Reddy DCL, Radhika V, Bharadwaj A, Khandagale KS, Aswath C (2012) miRNAs in brinjal (Solanum melongena) mined through an in silico approach. J Hort Sci Biotechnol 87(2):186–192Google Scholar
  119. Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289. doi: 10.1038/srep32289 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469PubMedPubMedCentralCrossRefGoogle Scholar
  121. Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H (2012) The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J 72:781–790PubMedCrossRefGoogle Scholar
  122. Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59PubMedGoogle Scholar
  123. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sander SD, Joung JK (2014) CRISPR-Cas systems for genome editing, regulation and targeting. Nat Biotechnol 32(4):347–355PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35:599–605CrossRefGoogle Scholar
  126. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282PubMedPubMedCentralCrossRefGoogle Scholar
  127. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150PubMedCrossRefGoogle Scholar
  128. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87PubMedCrossRefGoogle Scholar
  129. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  130. Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotech J 13:791–800CrossRefGoogle Scholar
  131. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedCrossRefGoogle Scholar
  132. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27PubMedPubMedCentralCrossRefGoogle Scholar
  133. Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophiles and Staphylococcus aureus. Plant J 84(6):1295–1305PubMedCrossRefGoogle Scholar
  134. Stoddard BL (2011) Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15. doi: 10.1016/j.str.2010.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 2:931–945CrossRefGoogle Scholar
  136. Swedish Board of Agriculture (2015) Green light in the tunnel”! Swedish Board of Agriculture: a CRISPR-Cas9-mutant but not a GMO. http://www.upsc.se/about-upsc/news/4815-green-light-in-the-tunnel-swedish-board-of-agriculture-a-crispr-cas9-mutant-but-not-a-gmo.html. Accessed 10 Sept 2016
  137. Tax FE, Vernon DM (2001) T-DNA-associated duplication/translocations in Arabidopsis implications for mutant analysis and functional genomics. Plant Physiol 126:1527–1538PubMedPubMedCentralCrossRefGoogle Scholar
  138. Taylor G, Petrucci L, Lambert A, Baxter S, Jarjour J, Stoddard B (2012) LAHEDES: the LAGLIDADG homing endonuclease database and engineering server. Nucleic Acids Res 40:110–116CrossRefGoogle Scholar
  139. The McGuinness Institute (2013) An Overview of Genetic Modification in New Zealand 1973–2013: The First Forty Years, Auckland Council. http://www.aucklandcouncil.govt.nz/EN/planspoliciesprojects/plansstrategies/unitaryplan/Documents/Section32report/Appendices/Appendix%203.49.16.pdf. Accessed 8 Sept 2016
  140. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445PubMedPubMedCentralCrossRefGoogle Scholar
  141. Tsai C, Xue L (2015) CRISPRing into the woods. GM Crops Food. doi: 10.1080/21645698.2015.1091553 PubMedPubMedCentralGoogle Scholar
  142. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238CrossRefGoogle Scholar
  143. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293. doi: 10.1038/nature.2016.19754 PubMedCrossRefGoogle Scholar
  144. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951PubMedCrossRefGoogle Scholar
  145. Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L et al (2015) Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS One. doi: 10.1371/journal.pone.0122755 Google Scholar
  146. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. doi: 10.1371/journal.pone.0154027 Google Scholar
  147. Weeks DP, Spalding MH, Yang B (2015) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotech J. doi: 10.1111/pbi.12448 Google Scholar
  148. Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15(6):308–321PubMedCrossRefGoogle Scholar
  149. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch- Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedCrossRefGoogle Scholar
  150. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338. doi: 10.1038/nature10886 PubMedCrossRefGoogle Scholar
  151. Wolt JD, Wang K, Yang B (2015) The Regulatory Status of Genome-edited Crops. Plant Biotech J. doi: 10.1111/pbi.12444 Google Scholar
  152. Woo JW, Kim J, Kwon S, Corvalán C, Cho SW, Kim H, Kim S, Kim S, Choe S, Kim J (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164. doi: 10.1038/nbt.3389 PubMedCrossRefGoogle Scholar
  153. Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705PubMedCrossRefGoogle Scholar
  154. Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462:15–24PubMedCrossRefGoogle Scholar
  155. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983PubMedCrossRefGoogle Scholar
  156. Xiong JS, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hort Res. doi: 10.1038/hortres.2015.19 Google Scholar
  157. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N Y) 7:5. doi: 10.1186/s12284-014-0005-6 Google Scholar
  158. Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep. doi: 10.1038/srep11491 Google Scholar
  159. Yokoi AN, Cermak T, Hoshino T, Sugimoto K, Saika H, Mori A, Osakabe K, Hamada M, Katayose Y, Starker C, Voytas DF, Toki S (2015) A defect in DNA ligase 4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol. doi: 10.1104/pp.15.01542 Google Scholar
  160. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyl transferases to access H1-containing heterochromatin. Cell 153:193–205PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. PNAS 107:12028–12033PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotech J 12:797–807CrossRefGoogle Scholar
  164. Zhang Z, Mao Y, Ha S, Liu W, Botella J, Zhu JK (2015) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. doi: 10.1007/s00299-015-1900-z Google Scholar
  165. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Cruz CV, Frommer WB, White FF, Yang B (2015a) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643PubMedCrossRefGoogle Scholar
  167. Zhou X, Jacobs TB, Xue L, Harding SA, Tsai C (2015b) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301PubMedCrossRefGoogle Scholar
  168. Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR–Cas9. J Genet Genomics 43:25–36PubMedCrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of BotanySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations