Plant Biotechnology Reports

, Volume 4, Issue 1, pp 15–21 | Cite as

Modest calcium increase in tomatoes expressing a variant of Arabidopsis cation/H+ antiporter

  • Mi Young Chung
  • Jeung-Sul Han
  • James Giovannoni
  • Yang Liu
  • Chang Kil Kim
  • Ki Byung Lim
  • Jae Dong Chung
Original Article


The over-expression of Arabidopsis CAX1 and CAX2 causes transgenic tomato plants to reveal severe Ca2+ deficiency-like symptoms such as tip-burn and/or blossom end rot, despite there being sufficient Ca2+ in each plant part. To correct the symptoms and to moderately enhance the calcium level, a worldwide vegetable tomato was genetically engineered using a modified Arabidopsis cation/H+ antiporter sCAX2A, a mutant form of Arabidopsis CAX2. Compared with the wild-type, the sCAX2A-expressing tomato plants demonstrated elevated Ca2+ levels in the fruits with almost no changes in the levels of Mn2+, Cu2+, and Fe2+. Moreover, expression of sCAX2A in tomato plants did not show any significant alterations in their morphological phenotypes. Unlike 35S::sCAX1 construct, sCAX2A antiporter gene driven by 35S promoter can be a valuable tool for enriching Ca2+ contents in the tomato fruit without additional accumulation of the undesirable cations.


Solanum lycopersicum Genetic transformation Cation/H+ antiporter Ca2+ nutrition Blossom-end rot Tip-burn 


  1. Adams P, Ho LC (1993) Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot plant and soil. Plant Soil 154:127–132CrossRefGoogle Scholar
  2. Cheng NH, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt DE, Hirschi KD (2005) Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol 138:2048–2060CrossRefPubMedGoogle Scholar
  3. Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13CrossRefPubMedGoogle Scholar
  4. Fleming KH, Heimback JT (1994) Consumption of calcium in the US: food sources and intake levels. J Nutr 124:1426S–1430SPubMedGoogle Scholar
  5. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963CrossRefPubMedGoogle Scholar
  6. Fulton T, Julapark C, Tanksley S (1995) Miniprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209CrossRefGoogle Scholar
  7. Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122CrossRefPubMedGoogle Scholar
  8. Hirschi KD (2004) The calcium conundrum: both versatile nutrient and specific signal. Plant Physiol 136:2438–2442CrossRefPubMedGoogle Scholar
  9. Hirschi KD, Zhen R-G, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786CrossRefPubMedGoogle Scholar
  10. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133CrossRefPubMedGoogle Scholar
  11. Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom end rot in tomato fruit. Ann Bot (Lond) 95:571–581CrossRefGoogle Scholar
  12. Holsters M, De Waele D, Depickev A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of A. tumefaciens. Mol Genet Genomics 163:181–187CrossRefGoogle Scholar
  13. Kim CK, Han JS, Lee HS, Oh JY, Shigaki T, Park SH, Hirschi KD (2006) Expression of an Arabidopsis CAX2 variant in potato tubers increases calcium levels with no accumulation of manganese. Plant Cell Rep 25:1226–1232CrossRefPubMedGoogle Scholar
  14. Lee KD, Lee YB, Yang MS, Kim PJ (2002) Effect of soil amendment application on yields and effective components of Chrysanthemum boreale M. Korean J Soil Sci Fertil 35:27–37Google Scholar
  15. Marschner H (1995) Mineral nutrition of higher plants. Academic, New YorkGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  17. Nonami H, Fukuyama T, Yamamoto M, Yang L, Hashimoto Y (1995) Blossom-end rot of tomato plants may not be directly caused by calcium deficiency. Acta Hortic 395:107–114Google Scholar
  18. Park S, Kim C-K, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282CrossRefGoogle Scholar
  19. Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139:1194–1206CrossRefPubMedGoogle Scholar
  20. Pittman JK, Shigaki T, Marshall JL, Morris JL (2004) Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Mol Biol 56:959–971CrossRefPubMedGoogle Scholar
  21. Schaaf G, Catoni E, Fitz M, Schwacke R, Schneider A, von Wiré N, Frommer WB (2002) A putative role for the vacuolar calcium/manganese proton antiporter AtCAX2 in heavy metal detoxification. Plant Biol 4:612–618CrossRefGoogle Scholar
  22. Shear CB (1975) Calcium-related disorders of fruits and vegetables. HortScience 10:361–365Google Scholar
  23. Shigaki T, Pittman JK, Hirschi KD (2003) Manganese specificity determinants in the Arabidopsis metal/H+ antiporter CAX2. J Biol Chem 278:6610–6661CrossRefPubMedGoogle Scholar
  24. Simon EW (1978) The symptoms of calcium deficiency in plants. New Phytol 80:1–15CrossRefGoogle Scholar
  25. Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301CrossRefGoogle Scholar
  26. Weaver CM, Proulx WR, Heaney R (1999) Choices for achieving adequate dietary calcium with a vegetarian diet. Am J Clin Nutr 70:543S–548SPubMedGoogle Scholar
  27. Wyatt SE, Tsou P-L, Robertson D (2002) Expression of the high-capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants. Transgenic Res 11:1–10CrossRefPubMedGoogle Scholar
  28. Yamaguchi T, Fukada-Tanaka S, Inagaki Y, Saito N, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Iida S (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Physiol 42:451–461Google Scholar

Copyright information

© Korean Society for Plant Biotechnology and Springer 2009

Authors and Affiliations

  • Mi Young Chung
    • 1
  • Jeung-Sul Han
    • 2
  • James Giovannoni
    • 1
  • Yang Liu
    • 1
  • Chang Kil Kim
    • 3
  • Ki Byung Lim
    • 4
  • Jae Dong Chung
    • 4
  1. 1.Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaUSA
  2. 2.Department of Ecological Environment ConservationKyungpook National UniversitySangjuRepublic of Korea
  3. 3.Department of Environmental HorticultureKyungpook National UniversitySangjuRepublic of Korea
  4. 4.School of Plant BiosciencesKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations