Korean Journal of Chemical Engineering

, Volume 36, Issue 12, pp 2095–2103 | Cite as

Modified kinetic rate equation model for cooling crystallization

  • Yuntae Jin
  • Kiho Park
  • Dae Ryook YangEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


The kinetic rate equation (KRE) model, unlike the population balance equation model, can describe growth, nucleation, and even Ostwald ripening simultaneously. However, the KRE model cannot be applied in cooling crystallization systems. In this work, we propose a modified KRE model to describe cooling crystallization. The modified KRE model can successfully describe crystal growth and nucleation in cooling crystallization systems. In addition, the metastable zone width was simulated using the modified KRE model and compared with the experimental data in references. The results revealed that the modified KRE model could express the effect of overheating prior to cooling on the metastable zone width. As the extent of overheating increases, the metastable zone width becomes wider, which phenomenon can be clearly simulated by the modified KRE model. This modeling capability is attributed to the behavior of particle clusters that are sized less than the size of sub-nuclei. Because the population balance equation model cannot describe the metastable zone width, the modified KRE model has certain competitive advantages in its application to various crystallization systems.


Modeling Crystallization Population Balance Metastable Zone Width Cooling Crystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Mullin, Crystallization, Elsevier (2001).Google Scholar
  2. 2.
    M. Fujiwara, Z. K. Nagy, J. W. Chew and R. D. Braatz, J. Process Control, 15, 493 (2005).CrossRefGoogle Scholar
  3. 3.
    N. Sanzida and Z. K. Nagy, Comput. Chem. Eng., 130, 106559 (2019).CrossRefGoogle Scholar
  4. 4.
    C. F. C. Marcellos, H. Durand, J. S. I. Kwon, A. G. Barreto, P. L. da Cunha Lage, M. B. de Souza, A. R. Secchi and P. D. Christofides, AIChE J., 64, 1618 (2018).CrossRefGoogle Scholar
  5. 5.
    M.A. McDonald, A.S. Bommarius, R.W. Rousseau and M.A. Grover, Comput. Chem. Eng., 123, 331 (2019).CrossRefGoogle Scholar
  6. 6.
    H. Kim, K. Park, J. W Chang, T. Lee, S. H. Kim and D. R. Yang, Cryst. Growth Des., 19, 1748 (2019).CrossRefGoogle Scholar
  7. 7.
    K. Park, D. Y. Kim and D. R. Yang, Ind. Eng. Chem. Res., 55, 7142 (2016).CrossRefGoogle Scholar
  8. 8.
    I. H. Leubner, Curr. Opin. Colloid Interface Sci., 5, 151 (2000).CrossRefGoogle Scholar
  9. 9.
    T. Y. Chiu and P. D. Christofides, AIChE J., 46, 266 (2000).CrossRefGoogle Scholar
  10. 10.
    J.S.-I. Kwon, M. Nayhouse, P.D. Christofides and G. Orkoulas, Chem. Eng. Sci., 107, 47 (2014).CrossRefGoogle Scholar
  11. 11.
    J. S.-I. Kwon, M. Nayhouse, G. Orkoulas and P. D. Christofides, Chem. Eng. Sci., 119, 30 (2014).CrossRefGoogle Scholar
  12. 12.
    D. J. Griffin, M. A. Grover, Y. Kawajiri and R. W. Rousseau, Ind. Eng. Chem. Res., 55, 1361 (2016).CrossRefGoogle Scholar
  13. 13.
    H. Li, Y. Kawajiri, M.A. Grover and R.W. Rousseau, Ind. Eng. Chem. Res., 56, 4060 (2017).CrossRefGoogle Scholar
  14. 14.
    D. J. Griffin, Y. Kawajiri, M. A. Grover and R. W Rousseau, Cryst. Growth Des., 15, 305 (2014).CrossRefGoogle Scholar
  15. 15.
    D. J. Griffin, Y. Kawajiri, R. W. Rousseau and M. A. Grover, Chem. Eng. Sci., 164, 344 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Li, C.J. Tilbury, M. N. Joswiak, B. Peters and M. F. Doherty, Cryst. Growth Des., 16, 3313 (2016).CrossRefGoogle Scholar
  17. 17.
    D. Ramkrishna and M. R. Singh, Annu. Rev. Chem. Biomol Eng., 5, 123 (2014).CrossRefGoogle Scholar
  18. 18.
    F. Puel, G. Févotte and J. Klein, Chem. Eng. Sci., 58, 3715 (2003).CrossRefGoogle Scholar
  19. 19.
    C. B. B. Costa, M. R. W Maciel and R. Maciel Filho, Comput. Chem. Eng., 31, 206 (2007).CrossRefGoogle Scholar
  20. 20.
    L. F. Farias, J. A. de Souza, R. D. Braatz and C. A. da Rosa, Comput. Chem. Eng., 123, 246 (2019).CrossRefGoogle Scholar
  21. 21.
    D. Fysikopoulos, B. Benyahia, A. Borsos, Z. K. Nagy and C. D. Rielly, Comput. Chem. Eng., 122, 275 (2019).CrossRefGoogle Scholar
  22. 22.
    B. Szilágyi, P. S. e. Agachi and Z. n. K. Nagy, Ind. Eng. Chem. Res., 57, 3320 (2018).CrossRefGoogle Scholar
  23. 23.
    S. Sulttan and S. Rohani, J. Cryst. Growth, 505, 19 (2019).CrossRefGoogle Scholar
  24. 24.
    C.A. da Rosa and R.D. Braatz, Ind. Eng. Chem. Res., 57, 11702 (2018).CrossRefGoogle Scholar
  25. 25.
    H. M. Hulburt and S. Katz, Chem. Eng. Sci., 19, 555 (1964).CrossRefGoogle Scholar
  26. 26.
    A. Randolph and M. Larson, Theory of particulate technology, Academic Press, New York (1971).Google Scholar
  27. 27.
    T. Vetter, M. Iggland, D. R. Ochsenbein, F. S. Hänseler and M. Mazzotti, Cryst. Growth Des., 13, 4890 (2013).CrossRefGoogle Scholar
  28. 28.
    X. Fu, D. Zhang, S. Xu, B. Yu, K. Zhang, S. Rohani and J. Gong, Cryst. Growth Des., 18, 2851 (2018).CrossRefGoogle Scholar
  29. 29.
    F. Anisi and H. J. Kramer, Chem. Eng. Res. Des., 138, 200 (2018).CrossRefGoogle Scholar
  30. 30.
    D. Kashchiev, Nucleation, Elsevier (2000).Google Scholar
  31. 31.
    L. Farkas, Z. Phys. Chemie., 125, 236 (1927).Google Scholar
  32. 32.
    I. Stranski and R. Kaischew, Ann. Phys., 415, 330 (1935).CrossRefGoogle Scholar
  33. 33.
    R. Becker and W. Döring, Ann. Phys., 416, 719 (1935).CrossRefGoogle Scholar
  34. 34.
    K. Hussain, G. Thorsen and D. Malthe-Sørenssen, Chem. Eng. Sci., 56, 2295 (2001).CrossRefGoogle Scholar
  35. 35.
    F. L. Nordström, M. Svärd, B. Malmberg and Å.C. Rasmuson, Cryst. Growth Des., 12, 4340 (2012).CrossRefGoogle Scholar
  36. 36.
    T. Sugimoto, A. Mori and T. Inoue, J. Cryst. Growth, 292, 108 (2006).CrossRefGoogle Scholar
  37. 37.
    I. Lignos, R. Maceiczyk and A. J. deMello, Acc. Chem. Res., 50, 1248 (2017).CrossRefGoogle Scholar
  38. 38.
    Y. Tahri, Z. Kozisek, E. Gagnière, E. Chabanon, T. Bounahmidi and D. Mangin, Cryst. Growth Des., 16, 5689 (2016).CrossRefGoogle Scholar
  39. 39.
    J. Chang and G. Cooper, J. Comput. Phys., 6, 1 (1970).CrossRefGoogle Scholar
  40. 40.
    M. Iggland and M. Mazzotti, Cryst. Growth Des., 12, 1489 (2012).CrossRefGoogle Scholar
  41. 41.
    M. Trifkovic, M. Sheikhzadeh and S. Rohani, J. Cryst. Growth, 311, 3640 (2009).CrossRefGoogle Scholar
  42. 42.
    M. Lenka and D. Sarkar, J. Cryst. Growth, 408, 85 (2014).CrossRefGoogle Scholar
  43. 43.
    Q. Hu, S. Rohani, D. Wang and A. Jutan, AIChE J., 50, 1786 (2004).CrossRefGoogle Scholar
  44. 44.
    D. R. Yang, K. S. Lee, J. S. Lee, S. G. Kim, D. H. Kim and Y. K. Bang, Ind. Eng. Chem. Res., 46, 8158 (2007).CrossRefGoogle Scholar
  45. 45.
    S. S. Kadam, S. A. Kulkarni, R. C. Ribera, A. I. Stankiewicz, J. H. ter Horst and H. J. Kramer, Chem. Eng. Sci., 72, 10 (2012).CrossRefGoogle Scholar
  46. 46.
    M. Kobari, N. Kubota and I. Hirasawa, CrystEngComm, 15, 1199 (2013).CrossRefGoogle Scholar
  47. 47.
    K.-J. Kim and A. Mersmann, Chem. Eng. Sci., 56, 2315 (2001).CrossRefGoogle Scholar
  48. 48.
    J. Ulrich and C. Strege, J. Cryst. Growth, 237, 2130 (2002).CrossRefGoogle Scholar
  49. 49.
    S. Qi, P. Avalle, R. Saklatvala and D. Q. Craig, Eur. J. Pharm. Biopharm., 69, 364 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.School of Civil, Environmental and Architectural EngineeringKorea UniversitySeoulKorea

Personalised recommendations