Korean Journal of Chemical Engineering

, Volume 36, Issue 12, pp 2085–2094 | Cite as

A preferential CO2 separation using binary phases membrane consisting of Pebax®1657 and [Omim][PF6] ionic liquid

  • Kamran Shahrezaei
  • Reza AbediniEmail author
  • Mostafa Lashkarbolooki
  • Ahmad Rahimpour
Separation Technology, Thermodynamics


Pebax®1657 and [Omim][PF6] ionic liquid (IL) were used to fabricate a blend membrane and applied for CO2 separation. The changes upon adding ionic liquid into the polymer matrix as well as the membrane characteristics were studied through SEM, FTIR, DSC and TGA analysis. The obtained gas permeation results indicated that the CO2 permeability in all membranes was much higher than the other studied gases. CO2 permeability of Pebax containing 8 wt% IL increased from 82.3 Barrer up to 125.6 Barrer at a pressure of 2 bar, which showed a 53% increment compared to the neat Pebax membrane. Furthermore, as the [Omim][PF6] loading within the polymer matrix was increased, the CO2/CH4 and CO2/N2 selectivities improved. In addition, the permeability and selectivity of gases was enhanced as the feed pressure increased. Upon increasing feed pressure to 10 bar, the CO2 permeability of Pebax containing 8 wt% IL reached 185.3 Barrer, which was approximately 48% higher than the permeability at a pressure of 2 bar. Moreover, the selectivity of CO2/CH4 and CO2/N2 for the Pebax/8wt% IL membrane at pressure of 2 bar was 15.3 and 46.5, respectively, which improved to 19.7 and 59.8 as the pressure increased to 10 bar.


Gas Separation [Omim][PF6Pebax 1657 Permeability Selectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge Babol Noshirvani University of Technology for financial support of this project (Grant NO. BNUT/393054/2018).


  1. 1.
    R. Lee, Z. Jawad, A. Ahmad and H. Chua, Process Saf. Environ., 117, 159 (2018).CrossRefGoogle Scholar
  2. 2.
    M. H. Nematollahi, S. Babaei and R. Abedini, Korean J. Chem. Eng., 36, 763 (2019).CrossRefGoogle Scholar
  3. 3.
    I. Shakeel, A. Hussain and S. Farrukh, J. Polym. Environ., 27, 1449 (2019).CrossRefGoogle Scholar
  4. 4.
    R. Heck, M. S. Qahtani, G. O. Yahaya, I. Tanis, D. Brown, A. A. Bahamdan, A. W. Ameen, M. Vaidya, J.-P. Ballaguet and R. Alhajry, Sep. Purif. Technol., 173, 183 (2017).CrossRefGoogle Scholar
  5. 5.
    R. Abedini, M. Omidkhah and F. Dorosti, RSC Adv., 4, 36522 (2014).CrossRefGoogle Scholar
  6. 6.
    A. D. Kiadehi, A. Rahimpour, M. Jahanshahi and A. A. Ghoreyshi, J. Ind. Eng. Chem., 22, 199 (2015).CrossRefGoogle Scholar
  7. 7.
    E. Nezhadmoghadam, M. Pouafshari Chenar, M. Omidkhah, A. Nezhadmoghadam and R. Abedini, Korean J. Chem. Eng., 35, 526 (2019).CrossRefGoogle Scholar
  8. 8.
    H. R. Mahdavi, N. Azizi, M. Arzani and T. Mohammadi, J. Nat. Gas. Sci. Eng., 46, 275 (2017).CrossRefGoogle Scholar
  9. 9.
    A. Raza, S. Farrukh and A. Hussain, J. Polym. Environ., 25, 46 (2017).CrossRefGoogle Scholar
  10. 10.
    L. Hao, P. Li, T. Yang and T.-S. Chung, J. Membr. Sci., 436, 221 (2013).CrossRefGoogle Scholar
  11. 11.
    F. Dorosti, M. Omidkhah and R. Abedini, Chem. Eng. Res. Des., 92, 2439 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Rabiee, A. Ghadimi and T. Mohammadi, J. Membr. Sci., 476, 286 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Vatani, A. Raisi and G. Pazuki, J. Mol. Liq., 277, 471 (2019).CrossRefGoogle Scholar
  14. 14.
    P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková and G. Clarizia, Sep. Purif. Technol., 97, 73 (2012).CrossRefGoogle Scholar
  15. 15.
    E. Ghasemi Estahbanati, M. Omidkhah and A. Ebadi Amooghin, ACS. Appl. Mater. Inter., 9, 10094 (2017).CrossRefGoogle Scholar
  16. 16.
    M. Mozafari, R. Abedini and A. Rahimpour, J. Mater. Chem. A., 6, 12380 (2018).CrossRefGoogle Scholar
  17. 17.
    H. Hosseinzadeh Beiragh, M. Omidkhah, R. Abedini, T. Khosravi and S. Pakseresht, Asia-Pac. J. Chem. Eng., 11, 522 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Pazirofteh, M. Dehghani, S. Niazi, A. H. Mohammadi and M. Asghari, J. Mol. Liq., 241, 646 (2017).CrossRefGoogle Scholar
  19. 19.
    T.-S. Chung, L. Y. Jiang, Y. Li and S. Kulprathipanja, Prog. Poly. Sci., 32, 483 (2007).CrossRefGoogle Scholar
  20. 20.
    B. Sasikumar, G. Arthanareeswaran and A. Ismail, J. Mol. Liq., 266, 330 (2018).CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, M. Pan, X. Kang, W. Tu, H. Gao and X. Zhang, Chem. Eng. Sci., 189, 43 (2018).CrossRefGoogle Scholar
  22. 22.
    M. Li, X. Zhang, S. Zeng, H. Gao, J. Deng, Q. Yang and S. Zhang, RSC Adv., 7, 6422 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Car, C. Stropnik, W. Yave and K.-V. Peinemann, Sep. Purif. Technol., 62, 110 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Bhattacharya and M. K. Mandal, J. Clean. Prod., 156, 174 (2017).CrossRefGoogle Scholar
  25. 25.
    W. Fam, J. Mansouri, H. Li and V. Chen, J. Membr. Sci., 537, 54 (2017).CrossRefGoogle Scholar
  26. 26.
    E. G. Estahbanati, M. Omidkhah and A. E. Amooghin, J. Ind. Eng. Chem., 51, 77 (2017).CrossRefGoogle Scholar
  27. 27.
    M. Bhattacharya and M. K. Mandal, J. Clean. Prod., 156, 174 (2017).CrossRefGoogle Scholar
  28. 28.
    R. Lin, L. Ge, H. Diao, V. Rudolph and Z. Zhu, ACS Appl. Mater. Interfaces, 46, 32041 (2016).CrossRefGoogle Scholar
  29. 29.
    K. V. Otvagina, A. E. Mochalova, T. S. Sazanova, A. N. Petukhov, A. A. Moskvichev, A. V. Vorotyntsev, C. A. M. Afonso and I. V. Vorotyntsev, Membranes, 6, 31 (2016).CrossRefGoogle Scholar
  30. 30.
    N. Azizi, T. Mohammadi and R. M. Behbahani, J. Energy Chem., 26, 454 (2017).CrossRefGoogle Scholar
  31. 31.
    R. Abedini, M. Omidkhah and F. Dorosti, Int. J. Hydrogen Energy, 39, 7897 (2014).CrossRefGoogle Scholar
  32. 32.
    M. Jamshidi, V. Pirouzfar, R. Abedini and M. Z. Pedram, Korean J. Chem. Eng., 34, 829 (2017).CrossRefGoogle Scholar
  33. 33.
    G. Huang, A. P. Isfahani, A. Muchtar, K. Sakurai, B. B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah and B. Ghalei, J. Membr. Sci., 565, 370 (2018).CrossRefGoogle Scholar
  34. 34.
    Y.-J. Fu, C.-C. Hu, H.-z. Qui, K.-R. Lee and J.-Y. Lai, Sep. Purif. Technol., 62, 175 (2008).CrossRefGoogle Scholar
  35. 35.
    C. Joly, D. Le Cerf, C. Chappey, D. Langevin and G. Muller, Sep. Purif. Technol., 16, 47 (1999).CrossRefGoogle Scholar
  36. 36.
    A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi and A. Kargari, J. Membr. Sci., 524, 652 (2017).CrossRefGoogle Scholar
  37. 37.
    R. Nasir, N. N. R. Ahmad, H. Mukhtar and D. F. Mohshim, J. Environ. Chem. Eng., 6, 2363 (2018).CrossRefGoogle Scholar
  38. 38.
    E. Parodi, L. Govaert and G. Peters, Thermochim. Acta, 657, 110 (2017).CrossRefGoogle Scholar
  39. 39.
    A. Ghadimi, M. Amirilargani, T. Mohammadi, N. Kasiri and B. Sadatnia, J. Membr. Sci., 458, 14 (2014).CrossRefGoogle Scholar
  40. 40.
    H. Sanaeepur, R. Ahmadi, A. E. Amooghin and D. Ghanbari, J. Membr. Sci., 573, 234 (2019).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Kamran Shahrezaei
    • 1
  • Reza Abedini
    • 1
    Email author
  • Mostafa Lashkarbolooki
    • 1
  • Ahmad Rahimpour
    • 1
  1. 1.Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations