Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 12, pp 2118–2124 | Cite as

Controlling the recombination of electron-hole pairs by changing the shape of ZnO nanorods via sol-gel method using water and their enhanced photocatalytic properties

  • Yong Sik Seo
  • Seong-Geun OhEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 8 Downloads

Abstract

ZnO nanorods were prepared through a sol-gel process by adding various amounts of water at low temperature and atmospheric pressure conditions for application as a photocatalyst. The 1-D ZnO nanostructures can overcome fast recombination of photogenerated electrons and holes that inhibits photocatalytic efficiency. X-ray diffractometer and transmission electron microscopy measurements confirmed that the (002)/(100) intensity ratio increased from 0.83 to 1.34 and the morphology of the ZnO nanoparticles was changed from a spherical shape to nanorods with the addition of water. UV-vis spectroscopy showed a red shift from 360 nm to 371 nm, which indicates a decrease of the band gap energy. PL measurements of the ZnO nanorods showed a 103 times improvement of the NBE/DLE intensity ratio compared to the ZnO nanospheres. When the photocatalytic efficiency of the ZnO nanoparticles was estimated for the degradation of methylene blue dye under irradiation of UV light, the photocatalytic kinetic constant increased from 0.067 min−1 to 0.481 min−1. As a result, longer ZnO nanorods showed better photocatalytic performance.

Keywords

ZnO Sol-gel Process Nanorods Photocatalyst Electron-hole Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A 03013422).

References

  1. 1.
    J. Wang, R. Chen, Y. Xia, G. Wang, H. Zhao, L. Xiang and S. Komarneni, Ceram. Int., 43, 1870 (2017).CrossRefGoogle Scholar
  2. 2.
    J. Mishra, M. Jha, N. Kaur and A. K. Ganguli, Mater. Res. Bull., 102, 311 (2018).CrossRefGoogle Scholar
  3. 3.
    S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 115, 13211 (2011).CrossRefGoogle Scholar
  4. 4.
    C. J. Chang, M. H. Hsu, Y. C. Weng, C. Y. Tsay and C. K. Lin, Thin Solid Films, 528, 167 (2013).CrossRefGoogle Scholar
  5. 5.
    T. Di, B. Zhu, J. Zhang, B. Cheng and J. Yu, Appl. Surf. Sci., 389, 775 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Mao, H. Liu, S. Liu, Q. Ba, H. Wang, L. Gao, X. Li, C. Huang and W. Chen, Mater. Res. Bull., 93, 9 (2017).CrossRefGoogle Scholar
  7. 7.
    M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman and W. M. A. W. Daud, J. Environ. Manage., 198, 78 (2017).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Singh, K. Verma, A. Patyal, I. Sharma, P. B. Barman and D. Sharma, Solid State Sci., 89, 1 (2019).CrossRefGoogle Scholar
  9. 9.
    E. Hong, T. Choi and J. H. Kim, Korean J. Chem. Eng., 32, 424 (2015).CrossRefGoogle Scholar
  10. 10.
    B. Weng, M. Q. Yang, N. Zhang and Y. J. Xu, J. Mater. Chem. A, 2, 9380 (2014).CrossRefGoogle Scholar
  11. 11.
    R. Raji and K. G. Gopchandran, J. Phys. Chem. Solids, 113, 39 (2018).CrossRefGoogle Scholar
  12. 12.
    N. Huang, J. Shu, Z. Wang, M. Chen, C. Ren and W. Zhang, J. Alloys. Compd., 648, 919 (2015).CrossRefGoogle Scholar
  13. 13.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu, Sci. Rep., 4, 4596 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Z. Liu, Z. G. Zhao and M. Miyauchi, J. Phys. Chem. C, 113, 17132 (2009).Google Scholar
  15. 15.
    S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi and S. Matsuzawa, Appl. Catal. B-Environ., 57, 109 (2005).CrossRefGoogle Scholar
  16. 16.
    J. Zhang, L. Sun, H. Pan, C. Liao and C. Yan, New J. Chem., 26, 33 (2002).CrossRefGoogle Scholar
  17. 17.
    P. X. Gao and Z. L. Wang J. Phys. Chem. B, 108, 7534 (2004).CrossRefGoogle Scholar
  18. 18.
    J. J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002).CrossRefGoogle Scholar
  19. 19.
    R. Liu, A. A. Vertegel, E. W. Bohannan, T. A. Sorenson and J. A. Switzer, Chem. Mater., 13, 508 (2001).CrossRefGoogle Scholar
  20. 20.
    Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren and P. H. Fleming, Appl. Phys. Lett., 81, 3046 (2002).CrossRefGoogle Scholar
  21. 21.
    H. Cheng-Liang, C. Shoou-Jinn, H. Hui-Chuan, L. Yan-Ru, H. Chorng-Jye, T. Yung-Kuan and I. Chen, IEEE T. Nanotechnology, 4, 649 (2005).CrossRefGoogle Scholar
  22. 22.
    S. Yan, L. Wan, Z. Li and Z. Zou, Chem. Commun., 47, 5632 (2011).CrossRefGoogle Scholar
  23. 23.
    Q. Jijun, L. Xiaomin, H. Weizhen, S. J. Park, H. K. Kim, Y. H. Han, J. H. Lee and Y. D. Kim, Nanotechnology, 20, 155603 (2009).CrossRefGoogle Scholar
  24. 24.
    P. Banerjee, S. Chakrabarti, S. Maitra and B. K. Dutta, Ultrason. Sonochem., 19, 85 (2012).PubMedCrossRefGoogle Scholar
  25. 25.
    Y. Jeong, J. Y. Kang, I. Kim, H. Jeong, J. K. Park, J. H. Park and J. C. Jung, Korean J. Chem. Eng., 33, 114 (2016).CrossRefGoogle Scholar
  26. 26.
    B. Cheng, W. Shi, J. M. Russell-Tanner, L. Zhang and E. T. Samulski, Inorg. Chem., 45, 1208 (2006).PubMedCrossRefGoogle Scholar
  27. 27.
    H. J. Jung, S. Lee, H. C. Choi and M. Y. Choi, Solid State Sci., 21, 26 (2013).CrossRefGoogle Scholar
  28. 28.
    H. Wang, C. Xie and D. Zeng, J. Cryst. Growth, 277, 372 (2005).CrossRefGoogle Scholar
  29. 29.
    Y. Chen, H. Zhao, B. Liu and H. Yang, Appl. Catal. B-Environ., 163, 189 (2015).CrossRefGoogle Scholar
  30. 30.
    C. K. Frederik, T. Yi, T. Ralf and W. A. Jens, Nanotechnology, 19, 424013 (2008).CrossRefGoogle Scholar
  31. 31.
    J. Bouclé, H. J. Snaith and N. C. Greenham, J. Phys. Chem. C, 114, 3664 (2010).CrossRefGoogle Scholar
  32. 32.
    J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater., 14, 1216 (2002).CrossRefGoogle Scholar
  33. 33.
    S. Kundu, S. Sain, B. Satpati, S. R. Bhattacharyya and S. K. Pradhan, RSC Adv., 5, 23101 (2015).CrossRefGoogle Scholar
  34. 34.
    A. McLaren, T. Valdes-Solis, G. Li and S. C. Tsang, J. Am. Chem. Soc., 131, 12540 (2009).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Çolak, E. Karaköse and G. Kartopu, J. Mater. Sci-Mater. El., 29, 11964 (2018).CrossRefGoogle Scholar
  36. 36.
    L. Yanhong, W. Dejun, Z. Qidong, Y. Min and Z. Qinglin, J. Phys. Chem. B, 108, 3202 (2004).CrossRefGoogle Scholar
  37. 37.
    Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S. Ramakrishna and G. W. Ho, Nanotechnology, 20, 045604 (2008).PubMedCrossRefGoogle Scholar
  38. 38.
    M. S. Mohajerani, A. Lak and A. Simchi, J. Alloys. Compd., 485, 616 (2009).CrossRefGoogle Scholar
  39. 39.
    T. M. Shang, J. H. Sun, Q. F. Zhou and M. Y. Guan, Cryst. Res. Technol., 42, 1002 (2007).CrossRefGoogle Scholar
  40. 40.
    L. Yang, P. W. May, L. Yin and T. B. Scott, Nanotechnology, 18, 215602 (2007).CrossRefGoogle Scholar
  41. 41.
    J. Sun, J. Bian, H. Liang, J. Zhao, L. Hu, Z. Zhao, W. Liu and G. Du, Appl. Surf. Sci., 253, 5161 (2007).CrossRefGoogle Scholar
  42. 42.
    Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang and Y. Zhang, Sci. Rep., 6, 29907 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    K. Choi, T. Kang and S. G. Oh, Mater. Lett., 75, 240 (2012).CrossRefGoogle Scholar
  44. 44.
    Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun and D. Yu, Appl. Surf. Sci., 256, 1698 (2010).CrossRefGoogle Scholar
  45. 45.
    J. Gupta, K. C. Barick and D. Bahadur, J. Alloys. Compd., 509, 6725 (2011).CrossRefGoogle Scholar
  46. 46.
    J. Rouhi, M. Alimanesh, R. Dalvand, C. H. R. Ooi, S. Mahmud and M. R. Mahmood, Ceram. Int., 40, 11193 (2014).CrossRefGoogle Scholar
  47. 47.
    S. A. Vanalakar, S. S. Mali, M. P. Suryawanshi, N. L. Tarwal, P. R. Jadhav, G. L. Agawane, K. V. Gurav, A. S. Kamble, S. W. Shin, A. V. Moholkar, J. Y. Kim, J. H. Kim and P. S. Patil, Opt. Mater., 37, 766 (2014).CrossRefGoogle Scholar
  48. 48.
    C. B. Ong, L. Y. Ng and A. W. Mohammad, Renew. Sustain. Energy Rev., 81, 536 (2018).CrossRefGoogle Scholar
  49. 49.
    G. He, B. Huang, Z. Lin, W. Yang, Q. He and L. Li, Crystals, 8, 152 (2018).CrossRefGoogle Scholar
  50. 50.
    X. Chen, Z. Wu, D. Liu and Z. Gao, Nanoscale Res. Lett., 12, 143 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    L. Y. Yang, S. Y. Dong, J. H. Sun, J. L. Feng, Q. H. Wu and S. P. Sun, J. Hazard. Mater., 179, 438 (2010).PubMedCrossRefGoogle Scholar
  52. 52.
    Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, Inorg. Chem., 46, 6980 (2007).PubMedCrossRefGoogle Scholar
  53. 53.
    A. Leelavathi, G. Madras and N. Ravishankar, Phys. Chem. Chem. Phys., 15, 10795 (2013).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations