Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1826–1838 | Cite as

Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology

  • Zaharaddeen N. Garba
  • Wei Xiao
  • Weiming Zhou
  • Ibrahim Lawan
  • Yifan Jiang
  • Mingxi Zhang
  • Zhanhui YuanEmail author
Rapid Communication
  • 3 Downloads

Abstract

Due to increasing interest in the application of perovskites as promising adsorbents, the present study looks at how central composite design (CCD), a subset of response surface methodology (RSM), can statistically play a role in producing optimum lanthanum oxide-cobalt perovskite type nanoparticles (LaCoO3) by using a modified proteic synthesis method. The optimum LaCoO3 produced was tested for its capability in removing methyl orange (MO) and rhodamine B (RhB) dyes from aqueous solution. Calcination temperature and calcination time were optimized with the responses being percentage yield, MO and RhB removal. The best temperature and calcination time obtained were 775 °C and 62 mins, respectively, giving good and appreciable values for the three responses. The resulting optimal LaCoO3 was characterized by Fourier transform infra-red (FTIR), ultraviolet-visible spectrophotometry (UV/vis), scanning electron microscopy (SEM), pH of zero point charge (pHpzc) as well as BET analysis, yielding a mesoporous adsorbent with surface area of 61.130 m2 g−1 as well as 223.55 and 239.45 mg g−1 as the monolayer adsorption capacity values for MO and RhB, respectively. Freundlich model was the best in describing the equilibrium adsorption data with respect to both MO and RhB with the kinetic data for the two dyes both obeying pseudo-second-order kinetics model.

Keywords

LaCoO3 Perovskite Modified Proteic Method Adsorption Methyl Orange Rhodamine B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors humbly acknowledge the international funding provided by Fujian Agriculture and Forestry University (KXB16001A) and the Department of Science and Technology of Fujian Province (2017H6003), P.R. China.

Conflict of Interest

The authors have no conflict of interest with regards to the submission and publication of this article.

Supplementary material

11814_2019_400_MOESM1_ESM.pdf (196 kb)
Process optimization and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology

References

  1. 1.
    M. E. Argun, D. Güclü and M. Karatas, J. Ind. Eng. Chem., 20, 1079 (2014).Google Scholar
  2. 2.
    M. Shaban, M. R. Abukhadra, A. A. Parwaz Khan and B. M. Jibali, J. Taiwan Inst. Chem. Eng., 82, 102 (2018).Google Scholar
  3. 3.
    F. Banat, S. Al-Asheh, R. Al-Ahmad and F. Bni-Khalid, Bioresour. Technol., 98, 3017 (2007).PubMedGoogle Scholar
  4. 4.
    G. Crini, Bioresour. Technol., 97, 1061 (2006).PubMedGoogle Scholar
  5. 5.
    E. Brillas and C. A. Martínez-Huitle, Appl. Catal. B, 166–167, 603 (2015).Google Scholar
  6. 6.
    V. Khandegar and A. K. Saroha, J. Environ. Manage., 128, 949 (2013).PubMedGoogle Scholar
  7. 7.
    M. Bradha, T. Vijayaraghavan, S. P. Suriyaraj, R. Selvakumar and A. M. Ashok, J. Rare Earths, 33, 160 (2015).Google Scholar
  8. 8.
    T. Santhi, A. L. Prasad and S. Manonmani, Arab. J. Chem., 7, 494 (2014).Google Scholar
  9. 9.
    Y.-D. Chen, W.-Q. Chen, B. Huang and M.-J. Huang, Chem. Eng. Res. Des., 91, 1783 (2013).Google Scholar
  10. 10.
    M. H. Dehghani, A. Zarei, A. Mesdaghinia, R. Nabizadeh, M. Ali-mohammadi, M. Afsharnia and G. McKay, Chem. Eng. Res. Des., 140, 102 (2018).Google Scholar
  11. 11.
    Z. N. Garba, F. B. S. Shikin and A. R. Afidah, J. Chem. Eng. Chem. Res., 2, 623 (2015).Google Scholar
  12. 12.
    Z. N. Garba, A. R. Afidah and B. Z. Bello, J. Environ. Chem. Eng., 3, 2892 (2015).Google Scholar
  13. 13.
    H. Tavakkoli and M. Yazdanbakhsh, Micropor. Mesopor. Mater., 176, 86 (2013).Google Scholar
  14. 14.
    M. Yazdanbakhsh, H. Tavakkoli and S. M. Hosseini, Desalination, 281, 388 (2011).Google Scholar
  15. 15.
    M. Algueró, P. Ramos, R. Jiménez, H. Amorín, E. Vila and A. Castro, Acta Mater., 60, 1174 (2012).Google Scholar
  16. 16.
    C. Moure and O. Peña, Solid State Chem., 43, 148 (2015).Google Scholar
  17. 17.
    R. G. Shetkar and A. V. Salker, J. Mater. Sci. Technol., 26, 1098 (2010).Google Scholar
  18. 18.
    R. Guo, T. Jiao, R. Li, Y. Chen, W. Guo, L. Zhang, J. Zhou, Q. Zhang and Q. Peng, ACS Sustainable Chem. Eng., 6, 1279 (2018).Google Scholar
  19. 19.
    K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang and Q. Peng, Sci. China Mater., 61, 728 (2018).Google Scholar
  20. 20.
    R. Guo, R. Wang, J. Yin, T. Jiao, H. Huang, X. Zhao, L. Zhang, Q. Li, J. Zhou and Q. Peng, Nanomater., 9, 127 (2019).Google Scholar
  21. 21.
    X. Huang, R. Wang, T. Jiao, G. Zou, F. Zhan, J. Yin, L. Zhang, J. Zhou and Q. Peng, ACS Omega, 4, 1897 (2019).PubMedPubMedCentralGoogle Scholar
  22. 22.
    A. G. Santos, J. O. Leite, M. J. B. Souza, I. F. Gimenez and A. M. Garrido Pedrosa, Ceram. Int., 44, 5743 (2018).Google Scholar
  23. 23.
    E. Grabowska, Appl. Catal. B, 186, 97 (2016).Google Scholar
  24. 24.
    Z. N. Garba and A. R. Afidah, J. Anal. Appl. Pyrol., 107, 306 (2014).Google Scholar
  25. 25.
    J. Nsor-Atindana, M. Chen, H. D. Goff, F. Zhong, H. R. Sharif and Y. Li, Carbohyd. Polym., 172, 159 (2017).Google Scholar
  26. 26.
    G. Thoorens, F. Krier, B. Leclercq, B. Carlin and B. Evrard, Int. J. Pharm., 473, 64 (2014).PubMedGoogle Scholar
  27. 27.
    X. Zhang, Y. Wu, X. Li, X. Meng, H. Shi, Z. Wu and J. Zhang, Korean J. Chem. Eng., 36, 753 (2019).Google Scholar
  28. 28.
    Z. N. Garba, A. R. Afidah and S. A. Hamza, J. Environ. Chem. Eng., 2, 1423 (2014).Google Scholar
  29. 29.
    M. A. Ahmad and R. Alrozi, Chem. Eng. J., 165, 883 (2010).Google Scholar
  30. 30.
    C. W. Oo, M. J. Kassim and A. Pizzi, Ind. Crop. Prod., 30, 152 (2009).Google Scholar
  31. 31.
    W. S. Wan Ngah, S. Fatinathan and N. A. Yosop, Desalination, 272, 293 (2011).Google Scholar
  32. 32.
    L. T. Popoola, A. S. Yusuff, O. A. Adesina and M. A. Lala, J. Environ. Sci. Technol., 12, 65 (2019).Google Scholar
  33. 33.
    R. Baccar, P. Blánquez, J. Bouzid, M. Feki, H. Attiya and M. Sarrà, Fuel Proces. Technol., 106, 408 (2013).Google Scholar
  34. 34.
    M. Auta and B. H. Hameed, Chem. Eng. J., 175, 233 (2011).Google Scholar
  35. 35.
    H. Deng, L. Yang, G. Tao and J. Dai, J. Hazard. Mater., 166, 1514 (2009).PubMedGoogle Scholar
  36. 36.
    S. Deng, Y. Nie, Z. Du, Q. Huang, P. Meng, B. Wang, J. Huang and G. Yu, J. Hazard. Mater., 282, 150 (2015).PubMedGoogle Scholar
  37. 37.
    J. N. Sahu, J. Acharya and B. C. Meikap, Bioresour. Technol., 101, 1974 (2010).PubMedGoogle Scholar
  38. 38.
    M. A. Ahmad and R. Alrozi, Chem. Eng. J., 171, 510 (2010).Google Scholar
  39. 39.
    M. K. B. Gratuito, T. Panyathanmaporn, R. A. Chumnanklang, N. Sirinuntawittaya and A. Dutta, Bioresour. Technol., 99, 4887 (2008).PubMedGoogle Scholar
  40. 40.
    Ç. D. Şentorun-Shalaby, M. G. Uçak-Astarlioǧ Lu, L. Artok and Ç. Sarıcı, Micropor. Mesopor. Mater., 88, 126 (2006).Google Scholar
  41. 41.
    L. Zhang, B. Zhang, T. Wu, D. Sun and Y. Li, Colloids Surf., A: Physicochem. Eng. Aspects, 484, 118 (2015).Google Scholar
  42. 42.
    B. Tanhaei, A. Ayati, M. Lahtinen and M. Sillanpää, Chem. Eng. J., 259, 1 (2015).Google Scholar
  43. 43.
    T. Soltani and B.-K. Lee, J. Colloid Interface Sci., 481, 168 (2016).PubMedGoogle Scholar
  44. 44.
    S. Wang, B. Yang and Y. Liu, J. Colloid Interface Sci., 507, 225 (2017).PubMedGoogle Scholar
  45. 45.
    Z.-L. Cheng, Y.-X. Li and Z. Liu, Ecotoxicol. Environ. Safety, 148, 585 (2018).PubMedGoogle Scholar
  46. 46.
    Y. Ma, X. Y. Wu and G. K. Zhang, Appl. Catal. B,-Environ., 205, 262 (2017).Google Scholar
  47. 47.
    J. C. Santos, M. J. B. Souza, M. E. Mesquita and A. M. G. Pedrosa, Sci. Plen., Sci. Plen., 8, 1 (2012).Google Scholar
  48. 48.
    G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, Catal. Today, 41, 207 (1998).Google Scholar
  49. 49.
    A. G. Margellou, I. T. Papadas, D. E. Petrakis and G. S. Armatas, Mater. Res. Bull., 83, 491 (2016).Google Scholar
  50. 50.
    Q. Q. Shi, J. Zhang, C. L. Zhang C. Li, B. Zhang, W.W. Hu and J. T. Xu, J. Environ. Sci., 22, 91 (2010).Google Scholar
  51. 51.
    C. H. C. Tan, S. Sabar and M. H. Hussin, South African J. Chem. Eng., 26, 11 (2018).Google Scholar
  52. 52.
    A. Benaicha and M. Omari, J. Fundam. Appl. Sci., 10, 132 (2018).Google Scholar
  53. 53.
    P. W. Atkins, T. L. Overton, J. P. Rourke and M. T. Weller, Shriver and Atkins’ W. H. Freeman and Company, 5th Ed. New York (2010).Google Scholar
  54. 54.
    J. C. Santos, M. J. B. Souza, J. A. C. Ruiz, D. M. A. Melo, M. E. Mesquita and A. M. G. Pedrosa, J. Braz. Chem. Soc., 23, 1858 (2012).Google Scholar
  55. 55.
    C. J. Jones, Bookman, Porto Alegre, RS (2002).Google Scholar
  56. 56.
    S. Hosseini, M. A. Khan, M. R. Malekbala, W. Cheah and T. S. Y. Choong, Chem. Eng. J., 171, 1124 (2011).Google Scholar
  57. 57.
    R. Huang, Q. Liu, J. Huo and B. Yang, Arab. J. Chem., 10, 24 (2017).Google Scholar
  58. 58.
    H. Z. Ma, B. Wang and X. Y. Luo, J. Hazard. Mater., 149, 492 (2007).PubMedGoogle Scholar
  59. 59.
    S. Khamparia and D. Jaspal, J. Environ. Manage, 183, 786 (2016).PubMedGoogle Scholar
  60. 60.
    P. K. Satapathy, M. Das and A. K Sahoo, Indian J. Chem. Technol., 21, 257 (2014).Google Scholar
  61. 61.
    M. Mohammadi, A. J. Hassani, A. R. Mohamed and G. D. Najafpour, J. Chem. Eng. Data, 55, 5777 (2010).Google Scholar
  62. 62.
    N. S. Maurya, A. K. Mittal, P. Cornel and E. Rother, Bioresour. Technol., 97, 512 (2006).PubMedGoogle Scholar
  63. 63.
    T. Soltani and M. H. Entezari, Chem. Eng. J., 223, 145 (2013).Google Scholar
  64. 64.
    B. H. Hameed and M. I. El-Khaiary, J. Hazard. Mater., 159, 574 (2008).PubMedGoogle Scholar
  65. 65.
    F. Hayeeye, M. Sattar, W. Chinpa and O. Sirichote, Colloids Surf., A: Physicochem. Eng. Aspects, 513, 259 (2017).Google Scholar
  66. 66.
    N. N. Bahrudin, M. A. Nawi and W. I. N. W. Ismail, Korean J. Chem. Eng., 35, 1450 (2018).Google Scholar
  67. 67.
    M. N. Anjum, K. M. Zia, L. Zhu, Haroon-ur-Rashid, M. N. Ahmad, M. Zuber and H. Tang, Korean J. Chem. Eng., 31, 2192 (2014).Google Scholar
  68. 68.
    J. Liu, S. Ma and L. Zang, Appl. Surf. Sci., 265, 393 (2013).Google Scholar
  69. 69.
    L. Zhai, Z. Bai, Y. Zhu, B. Wang and W. Luo, Chinese J. Chem. Eng., 26, 657 (2018).Google Scholar
  70. 70.
    M. Sattar, F. Hayeeye, W. Chinpa and O. Sirichote, J. Environ. Chem. Eng., 5, 3780 (2017).Google Scholar
  71. 71.
    L. Largitte and R. Pasquier, Chem. Eng. Res. Des., 112, 289 (2016).Google Scholar
  72. 72.
    L. Largitte and R. Pasquier, Chem. Eng. Res. Des., 109, 495 (2016).Google Scholar
  73. 73.
    L. Mouni, L. Belkhiri, J.-C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani and H. Remini, Appl. Clay Sci., 153, 38 (2018).Google Scholar
  74. 74.
    P. Saha and S. Chowdhury, Intech, 16, 349 (2011).Google Scholar
  75. 75.
    D. Duranoğlu, A. W. Trochimczuk and U. Beker, Chem. Eng. J., 187, 193 (2012).Google Scholar
  76. 76.
    S. Jiancheng, L. Renlong, W. Haiping, L. Zuohua, S. Xiaolong and T. Changyuan, J. Taiwan Inst. Chem. Eng., 82, 351 (2018).Google Scholar
  77. 77.
    G. Z. Kyzas, N. K. Lazaridis and A. C. Mitropoulos, Chem. Eng. J., 189–190, 148 (2012).Google Scholar
  78. 78.
    P. Liao, Z. Malik Ismael, W. Zhang, S. Yuan, M. Tong, K. Wang and J. Bao, Chem. Eng. J., 195–196, 339 (2012).Google Scholar
  79. 79.
    O. Hernandez-Ramirez and S. M. Holmes, J. Mater. Chem., 18, 2751 (2008).Google Scholar
  80. 80.
    N. M. Mahmoodi, B. Hayati, M. Arami and C. Lan, Desalination, 268, 117 (2011).Google Scholar
  81. 81.
    I. A. W. Tan, A. L. Ahmad and B. H. Hameed, J. Hazar. Mater., 164, 473 (2009).Google Scholar
  82. 82.
    Y Qiu, Z. Zheng, Z. Zhou and G. D. Sheng, Bioresour. Technol., 100, 5348 (2009).PubMedGoogle Scholar
  83. 83.
    Y. Yu, B. N. Murthy, J. G. Shapter, K. T. Constantopoulos, N. H. Voelcker and A. V. Ellis, J. Hazard. Mater., 260, 330 (2013).PubMedGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Zaharaddeen N. Garba
    • 1
    • 2
  • Wei Xiao
    • 1
  • Weiming Zhou
    • 1
  • Ibrahim Lawan
    • 1
  • Yifan Jiang
    • 1
  • Mingxi Zhang
    • 1
  • Zhanhui Yuan
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringFujian Agriculture and Forestry UniversityFuzhou, Fujian ProvinceChina
  2. 2.Department of ChemistryAhmadu Bello UniversityZariaNigeria

Personalised recommendations