Korean Journal of Chemical Engineering

, Volume 36, Issue 12, pp 2104–2109 | Cite as

Facile fabrication and photocatalytic activity of Ag/AgI/rGO films

  • Sooyeon Jang
  • Sung Min Lee
  • Jin Seon You
  • Hyung-Jun KooEmail author
  • Suk Tai ChangEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


The composite material, Ag/AgX/graphene (X=Br, Cl, I), is considered a promising photocatalyst for photocatalytic degradation of organic pollutants. Its photocatalytic activity is superior to that of the conventional TiO2 photocatalyst; the enhanced photocatalytic activity is attributed to its effective charge separation ability and wide visible light absorption. However, the Ag/AgX/graphene composite is often prepared in the powder form, limiting its wide-spread application. In addition, the simple fabrication of Ag/AgX/graphene composite films is highly challenging. In this study, a simple solution-based process based on meniscus-dragging deposition is demonstrated for the fabrication of Ag/AgI/rGO composite films. Uniform catalyst films with reasonable photocatalytic activities can be easily fabricated by using this microliter-scale solution process.


Photocatalyst Solution Process Graphene Silver Nanowire Silver Halide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (No. 2019R1A2C1006413) and the Chung-Ang University Graduate Research Scholarship in 2018.

Supplementary material

11814_2019_396_MOESM1_ESM.pdf (2.6 mb)
Facile fabrication and photocatalytic activity of Ag/AgI/rGO films


  1. 1.
    S. W. Chook, C. H. Chia, S. Zakaria, M. K. Ayob, K. L. Chee, N. M. Huang, H. M. Neoh, H. N. Lim, R. Jamal and R. M. F. R. A. Rahman, Nanoscale Res. Lett., 7, 541 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    V. Etacheri, G. Michlits, M. K. Seery, S. J. Hinder and S. C. Pillai, ACS Appl. Mater. Interfaces, 5, 1663 (2013).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Gelover, P. Mondragön and A. Jiménez, J. Photochem. Photobiol. A Chem., 165, 241 (2004).CrossRefGoogle Scholar
  4. 4.
    F. Motahari, M. R. Mozdianfard, F. Soofivand and M. Salavati-Niasari, RSC Adv., 4, 27654 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Peral, X. Domènech and D. F. Ollis, J. Chem. Technol. Biotechnol., 70, 117 (1997).CrossRefGoogle Scholar
  6. 6.
    K. Hashimoto, H. Irie and A. Fujishima, Japanese J. Appl. Physics, 44, 8269 (2005).CrossRefGoogle Scholar
  7. 7.
    M. N. Chong, B. Jin, C. W. K. Chow and C. Saint, Water Res., 44, 2997 (2010).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renew. Sustain. Energy Rev., 11, 401 (2007).CrossRefGoogle Scholar
  9. 9.
    X. Zhang, Y. L. Chen, R. S. Liu and D. P. Tsai, Reports Prog. Phys., 76, 046401 (2013).CrossRefGoogle Scholar
  10. 10.
    K. Drew, G. Girishkumar, K. Vinodgopal and P. V. Kamat, J. Phys. Chem. B, 109, 11851 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Wang, F. Wang and J. He, Nanoscale, 5, 11291 (2013).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Chatterjee, V. R. Patnam, A. Sikdar, P. Joshi, R. Misra and N. N. Rao, J. Hazard. Mater., 156, 435 (2008).PubMedCrossRefGoogle Scholar
  13. 13.
    X. Ma, Y. Dai, M. Guo and B. Huang, ChemPhysChem, 13, 2304 (2012).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Zeng, B. Tian and J. Zhang, J. Colloid Interface Sci., 405, 17 (2013).PubMedCrossRefGoogle Scholar
  15. 15.
    P. Wang, B. Huang, X. Zhang, X. Qin, Y. Dai, Z. Wang and Z. Lou, ChemCatChem, 3, 360 (2011).CrossRefGoogle Scholar
  16. 16.
    L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley and Y. N. Xia, Nano Lett., 5, 2034 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    T. R. Jensen, M. D. Malinsky, C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 104, 10549 (2000).CrossRefGoogle Scholar
  18. 18.
    P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang and M. H. Whangbo, Chem. Eur. J., 15, 1821 (2009).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Zhu, P. Chen and M. Liu, ACS Nano, 5, 4529 (2011).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Williams, B. Seger and P. V. Kamt, ACS Nano, 2, 1487 (2008).PubMedCrossRefGoogle Scholar
  21. 21.
    X. H. Meng, X. Shao, H. Y. Li, J. Yin, J. Wang, F. Z. Liu, X. H. Liu, M. Wang and H. L. Zhong, Mater. Lett., 105, 162 (2013).CrossRefGoogle Scholar
  22. 22.
    Q. Xiang, J. Yu and M. Jaroniec, Chem. Soc. Rev., 41, 782 (2012).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Luo, X. Jiang, M. Li, Q. Shen, L. Zhang and H. Yu, ACS Appl. Mater. Interfaces, 5, 2161 (2013).PubMedCrossRefGoogle Scholar
  24. 24.
    L. Han, Z. Xu, P. Wang and S. Dong, Chem. Commun., 49, 4953 (2013).CrossRefGoogle Scholar
  25. 25.
    Q. Xiang, J. Yu and M. Jaroniec, Chem. Commun., 47, 4532 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Zhou, Y. Cheng and J. Yu, J. Photochem. Photobiol. A Chem., 223, 82 (2011).CrossRefGoogle Scholar
  27. 27.
    S. Ghosh, A. Saraswathi, S. S. Indi, S. L. Hoti and H. N. Vasan, Langmuir, 28, 8550 (2012).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. U. Ko, S. R. Cho, K. S. Choi, Y. Park, S. T. Kim, N. H. Kim, S. Y. Kim and S. T. Chang, J. Mater. Chem., 22, 3606 (2012).CrossRefGoogle Scholar
  29. 29.
    Y. Ko, N. H. Kim, N. R. Lee and S. T. Chang, Carbon, 77, 964 (2014).CrossRefGoogle Scholar
  30. 30.
    N.H. Kim, Y. Ko, S.R. Cho and S.T. Chang, J. Nanosci. Nanotechnol., 14, 3774 (2014).PubMedCrossRefGoogle Scholar
  31. 31.
    Z. Yin, S. K. Song, D. J. You, Y. Ko, S. Cho, J. Yoo, S. Y. Park, Y. Piao, S. T. Chang and Y. S. Kim, Small, 11, 4576 (2015).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. Ko, S. K. Song, N. H. Kim and S. T. Chang, Langmuir, 32, 366 (2016).PubMedCrossRefGoogle Scholar
  33. 33.
    N. H. Kim, B. J. Kim, Y. Ko, J. H. Cho and S. T. Chang, Adv. Mater., 25, 894 (2013).PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Liang, H. Wang, L. Liu, P. Wu, W. Cui, J.G. McEvoy and Z. Zhang, J. Mater. Sci., 50, 6935 (2015).CrossRefGoogle Scholar
  35. 35.
    C. Noguez, J. Phys. Chem. C, 111, 3606 (2007).CrossRefGoogle Scholar
  36. 36.
    J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander and N. J. Halas, Nano Lett., 12, 1660 (2012).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Liang, H. Tian and R. L. McCreery, Appl. Spectrosc., 61, 613 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    P. Zamostny and Z. Belohlav, Appl. Catal. A Gen., 225, 291 (2002).CrossRefGoogle Scholar
  39. 39.
    M. N. Rashed and A. A. El-Amin, Int. J. Phys. Sci., 2, 73 (2007).Google Scholar
  40. 40.
    S. Tabata, H. Ohnishi, E. Yagasaki, M. Ippommatsu and K. Domen, Catal. Lett., 28, 417 (1994).CrossRefGoogle Scholar
  41. 41.
    Y. Nosaka and A. Y. Nosaka J. Phys. Chem. C, 122, 28748 (2018).CrossRefGoogle Scholar
  42. 42.
    M. Ren, J. Chen, P. Wang, J. Hou, J. Qian, C. Wang and Y. Ao, J. Colloid Interface Sci., 532, 190 (2018).PubMedCrossRefGoogle Scholar
  43. 43.
    C. Hu, T. Peng, X. Hu, Y. Nie, X. Zhou, J. Qu and H. He, J. Am. Chem. Soc., 132, 857 (2010).PubMedCrossRefGoogle Scholar
  44. 44.
    D. A. Reddy, S. Lee, J. Choi, S. Park, R. Ma, H. Yang and T. K. Kim, Appl. Surf. Sci., 341, 175 (2015).CrossRefGoogle Scholar
  45. 45.
    R. Vinoth, P. Karthik, C. Muthamizhchelvan, B. Neppolian and M. Ashokkumar, Phys. Chem. Chem. Phys., 18, 5179 (2016).PubMedCrossRefGoogle Scholar
  46. 46.
    F. Zheng, W. L. Xu, H. D. Jin, X. T. Hao and K. P. Ghiggino, RSC Adv., 5, 89515 (2015).CrossRefGoogle Scholar
  47. 47.
    X. Zhang, Y. L. Chen, R. S. Liu and D. P. Tsai, Rep. Prog. Phys., 76, 046401 (2013).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and Materials ScienceChung-Ang UniversitySeoulKorea
  2. 2.Department of Chemical and Biomolecular EngineeringSeoul National University of Science and TechnologySeoulKorea

Personalised recommendations