Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate
- 12 Downloads
Abstract
Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate (SDBS) was investigated, focusing on establishing the best conditions for maximum degradation. The study involving different persulfate based oxidants, such as potassium persulfate (KPS), ammonium persulfate (NH3PS) and sodium persulfate (NaPS), revealed that the extent of degradation as 98.3, 82.2 and 68.2% was obtained for the use of KPS, NH3PS and NaPS, respectively. The study of the effect of SDBS concentration (25–100 mg/L), oxidant loading (0–3 g/L) and power (140–350 W) established that degradation decreased with an increase in the operating parameter beyond the optimum condition. Under optimized conditions using potassium persulfate (KPS) as an oxidant, 51.6% and 98.3% degradation of 50 mg/L SDBS solution was obtained by conventional and microwave assisted chemical oxidation approach, respectively, under optimized conditions of power, oxidant loading, volume and time maintained as 280 W, 2 g/L, 250 mL and 28 min, respectively. Extending the conventional approach for 120 min resulted in degradation of 92.5%, which establishes that microwave helps in reducing the treatment time significantly. Kinetic study revealed pseudo-first-order behavior for degradation of SDBS. Energy per order (EEO) for conventional and microwave assisted degradation was observed to be 840 and 317.33 kWh/m3, respectively. Overall, microwave assisted persulfate induced degradation of SDBS has been established to be promising method giving rapid degradation and better economics.
Keywords
Microwave Assisted Degradation Advanced Oxidation Process Anionic Surfactant Persulfate Based Oxidant Sulfate Radical Thermal ActivationPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The authors gratefully acknowledge University Grant Commission for assistance under UGC-NRC, at the Institute of Chemical Technology, Mumbai, Maharashtra, India.
Conflict of Interest Statement
On behalf of all authors, the corresponding author states that there is no conflict of interest.
References
- 1.C. Edser, Focus Surfactants, 2018, 1 (2018).Google Scholar
- 2.J. Beltrán-Heredia, J. Sánchez-Martín and C. Solera-Hernández, Chem. Eng. J., 153, 56 (2009).CrossRefGoogle Scholar
- 3.E. Yüksel, I. A. Şengil and M. Özacar, Chem. Eng. J., 152, 347 (2009).CrossRefGoogle Scholar
- 4.S. R. Taffarel and J. Rubio, Miner. Eng., 23, 771 (2010).CrossRefGoogle Scholar
- 5.M. Sanchez, M. J. Rivero and I. Ortiz, Appl. Catal. B Environ., 101, 515 (2011).CrossRefGoogle Scholar
- 6.S. H. Wu and P. Pendleton, J. Colloid Interface Sci., 243, 306 (2001).CrossRefGoogle Scholar
- 7.G.-G. Ying, Environ. Int., 32, 417 (2006).PubMedCrossRefGoogle Scholar
- 8.P. S. Bhandari and P. R. Gogate, J. Mol. Liq., 252, 495 (2018).CrossRefGoogle Scholar
- 9.S. Gupta, A. Pal, P. K. Ghosh and M. Bandyopadhyay, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 38, 381 (2003).PubMedCrossRefGoogle Scholar
- 10.E. Manousaki, E. Psillakis, N. Kalogerakis and D. Mantzavinos, Water Res., 38, 3751 (2004).PubMedCrossRefGoogle Scholar
- 11.A. K. Mungray and P. Kumar, J. Hazard. Mater., 160, 362 (2008).PubMedCrossRefGoogle Scholar
- 12.M. J. Scott and M. N. Jones, Biochim. Biophys. Acta, 1508, 235 (2000).PubMedCrossRefGoogle Scholar
- 13.W. de Wolf and T. Feijtel, Chemosphere, 36, 1319 (1998).PubMedCrossRefGoogle Scholar
- 14.D. A. Patterson, I. S. Metcalfe, F. Xiong and A. G. Livingston, Ind. Eng. Chem. Res., 40, 5507 (2001).CrossRefGoogle Scholar
- 15.U. Merrettig-Bruns and E. Jelen, Materials (Basel), 2, 181 (2009).CrossRefGoogle Scholar
- 16.A. Adak, M. Bandopadhyay and A. Pal, Colloids Surf. A: Physicochem. Eng. Asp., 254, 165 (2005).CrossRefGoogle Scholar
- 17.A. Adak, M. Bandopadhyay and A. Pal, J. Env. Sci. Health Part A, 40, 167 (2005).CrossRefGoogle Scholar
- 18.P. D. Purakayastha, A. Pal and M. Bandyopadhyay, Indian J. Chem. Technol., 12, 281 (2005).Google Scholar
- 19.W. Kong, B. Wang, H. Ma and L. Gu, J. Hazard. Mater., 137, 1532 (2006).PubMedCrossRefGoogle Scholar
- 20.A. S. Koparal, E. Önder and Ü.B. Ögütveren, Desalination, 197, 262 (2006).CrossRefGoogle Scholar
- 21.M. A. Abu-Hassan, J.K. Kim, I. S. Metcalfe and D. Mantzavinos, Chemosphere, 62, 749 (2006).PubMedCrossRefGoogle Scholar
- 22.R. A. Kimerle and R. D. Swisher, Water Res., 11, 31 (1977).CrossRefGoogle Scholar
- 23.F. Hosseini, F. Malekzadeh, N. Amirmozafari and N. Ghaemi, Int. J. Environ. Sci. Technol., 4, 127 (2007).CrossRefGoogle Scholar
- 24.H. Farzaneh, M. Fereidon, A. Noor and G. Naser, J. Biotechnol., 9, 55 (2010).CrossRefGoogle Scholar
- 25.N. Azbar, T. Yonar and K. Kestioglu, Chemosphere, 55, 35 (2004).PubMedCrossRefGoogle Scholar
- 26.A. Alinsafi, M. Khemis, M. N. Pons, J. P. Leclerc, A. Yaacoubi, A. Benhammou and A. Nejmeddine, Chem. Eng. Process. Process. Intensif, 44, 461 (2005).CrossRefGoogle Scholar
- 27.F. Ríos, M. Olak-Kucharczyk, M. Gmurek and S. Ledakowicz, Arch. Environ. Prot., 43, 20 (2017).CrossRefGoogle Scholar
- 28.Z. Zhang, D. Xu, M. Shen, D. Wu, Z. Chen, X. Ji, F. Li and Y. Xu, Desalination, 249, 1022 (2009).CrossRefGoogle Scholar
- 29.I. M. Banat, P. Nigam, D. Singh and R. Marchant, Bioresour. Technol., 58, 217 (1996).CrossRefGoogle Scholar
- 30.N. N. Patil and S. R. Shukla, J. Water Process. Eng., 7, 314 (2015).CrossRefGoogle Scholar
- 31.P. R. Gogate and A. B. Pandit, Adv. Environ. Res., 8, 501 (2004).CrossRefGoogle Scholar
- 32.K. Ikehata and M. G. El-Din, Ozone Sci. Eng., 26, 327 (2004).CrossRefGoogle Scholar
- 33.W. H. Glaze, J. W. Kang and D. H. Chapin, Ozone Sci. Eng. J. Int. Ozone Assoc., 9, 335 (1987).CrossRefGoogle Scholar
- 34.U. M. Nascimento and E. B. Azevedo, J. Environ. Sci. Heal Part A Toxic/Hazardous Subst. Environ. Eng., 48, 1056 (2013).CrossRefGoogle Scholar
- 35.M. Ashokkumar, T. Niblett, L. Tantiongco and F. Grieser, Aust. J. Chem., 56, 1045 (2003).CrossRefGoogle Scholar
- 36.M. H. Dehghani, A. Zarei and M. Yousefi, MethodsX, 6, 805 (2019).PubMedPubMedCentralCrossRefGoogle Scholar
- 37.M.N. Chong, B. Jin, C.W.K. Chow and C. Saint, Water Res., 44, 2997 (2010).PubMedCrossRefGoogle Scholar
- 38.L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001).CrossRefGoogle Scholar
- 39.M. B. Gawande, S. N. Shelke, R. Zboril and R. S. Varma, Acc Chem. Res., 47, 1338 (2014).PubMedCrossRefGoogle Scholar
- 40.C. Qi, X. Liu, C. Lin, X. Zhang, J. Ma, H. Tan and W. Ye, Chem. Eng. J., 249, 6 (2014).CrossRefGoogle Scholar
- 41.Y. Kim and J. Ahn, Int. Biodeterior. Biodegrad., 95, 208 (2014).CrossRefGoogle Scholar
- 42.J. Jacob, L. H. L. Chia and F. Y. C. Boey, J. Mater. Sci., 30, 5321 (1995).CrossRefGoogle Scholar
- 43.Z. Zhang, Y. Deng, M. Shen, W. Han, Z. Chen, D. Xu and X. Ji, Water Sci. Technol., 63, 424 (2011).PubMedCrossRefGoogle Scholar
- 44.A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R. L. Siegrist and P. L. Bjerg, Crit. Rev. Environ. Sci. Technol., 40, 55 (2010).CrossRefGoogle Scholar
- 45.S. Rodriguez, L. Vasquez, D. Costa, A. Romero and A. Santos, Chemosphere, 101, 86 (2014).PubMedCrossRefGoogle Scholar
- 46.Y. Ji, Y. Fan, K. Liu, D. Kong and J. Lu, Water Res., 87, 1 (2015).PubMedCrossRefGoogle Scholar
- 47.Y.Q. Zhang, X.Z. Du and W.L. Huang, Chinese Chem. Lett., 22, 358 (2011).CrossRefGoogle Scholar
- 48.M. Nüchter, U. Müller, B. Ondruschka, A. Tied and W. Lautenschläger, Chem. Eng. Technol., 26, 1207 (2003).CrossRefGoogle Scholar
- 49.F. Langa, P. de la Cruz, A. de la Hoz, A. Díaz-Ortiz and E. Díez-Barra, Contemp. Org. Synth., 4, 373 (1997).CrossRefGoogle Scholar
- 50.L. W. Matzek and K. E. Carter, Chemosphere, 151, 178 (2016).PubMedCrossRefGoogle Scholar
- 51.A. Veksha, P. Pandya and J. M. Hill, J. Environ. Chem. Eng., 3, 1452 (2015).CrossRefGoogle Scholar
- 52.A. de la Hoz, A. Díaz-Ortiz and A. Moreno, J. Microw. Power Electromagn Energy, 41, 44 (2007).PubMedGoogle Scholar
- 53.R. J. Jachuck, D. K. Selvaraj and R. S. Varma, Green Chem., 8, 29 (2006).CrossRefGoogle Scholar
- 54.J. Méndez-Díaz, M. Sanchez-Polo, J. Rivera-Utrila and M. I. Bautista-Toledo, Water Res., 43, 1621 (2009).PubMedCrossRefGoogle Scholar
- 55.J. Rivera-Utrilla, J. Méndez-Díaz, M. Sanchez-Polo, M. A. Ferro-Garcia and I. Baustista-Toledo, Water Res., 40, 1717 (2006).PubMedCrossRefGoogle Scholar
- 56.Y. Deng and C.M. Ezyske, Water Res., 45, 6189 (2011).PubMedCrossRefGoogle Scholar
- 57.J. Méndez-Díaz, M. Sánchez-Polo, J. Rivera-Utrilla, S. Canonica and U. von Gunten, Chem. Eng. J., 163, 300 (2010).CrossRefGoogle Scholar
- 58.D. Zhou, H. Zhang and L. Chen, J. Chem. Technol. Biotechnol., 90, 775 (2015).CrossRefGoogle Scholar
- 59.C. Liang and H. Su, Ind. Eng. Chem. Res., 48, 5558 (2009).CrossRefGoogle Scholar
- 60.Y. Liu, X. He, Y. Fu and D.D. Dionysiou, J. Hazard. Mater., 305, 229 (2016).PubMedCrossRefGoogle Scholar
- 61.H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa and R. Arakawa, Environ. Sci. Technol., 39, 2383 (2005).PubMedCrossRefGoogle Scholar
- 62.C. S. Liu, C. P. Higgins, F. Wang and K. Shih, Sep. Purif. Technol., 91, 46 (2012).CrossRefGoogle Scholar
- 63.L. Bo, X. Quan, S. Chen, H. Zhao and Y. Zhao, Water Res., 40, 3061 (2006).PubMedCrossRefGoogle Scholar
- 64.J. Tierney and J. Westman, Tetrahedron, 57, 9225 (2001).CrossRefGoogle Scholar
- 65.N. Remya and J. Lin, Chem. Eng. J., 166, 797 (2011).CrossRefGoogle Scholar
- 66.N. Daneshvar, A. Aleboyeh and A. R. Khataee, Chemosphere, 59, 761 (2005).PubMedCrossRefGoogle Scholar