Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1882–1889 | Cite as

Prolonged antimicrobial activity of silver core-carbon shell nanoparticles

  • Zengkai Wang
  • Tianke Wang
  • An Hua
  • Song MaEmail author
  • Zhidong Zhang
  • Lei LiuEmail author
Biotechnology
  • 65 Downloads

Abstract

Ag nanoparticles present good antimicrobial activity but with a potential toxicity to the cell, which limits the application. To address this issue, in this work, carbon-encapsulated sliver nanocapsules (Ag@C nanocapsules) were prepared by evaporating pure Ag ingot with the modified arc-discharge technique, and the Ag@C nanocapsules were acidified with nitric acid subsequently to facilitate the silver ion to release. Finally, Ag@C nanocapsules displayed a good and sustained antimicrobial activity against E. coli as a model of Gram-negative bacteria, due to the long-term release of sliver ions from Ag@C nanocapsules. The results obtained in this work indicate that the Ag@C nanocapsules may be a suitable nanomaterial for the bactericidal application.

Keywords

Antimicrobial Nanomaterials Ag@C Nanocapsules Carbon Shell Sustained Release 

Nomenclature

Symbols

C

concentration

°C

degree centigrade

h

hour

mg

milligram

µg

microgramme

mL

milliliter

mmoL

millimole

moL

moore

Abbreviations

Ag@C nanocapsules

carbon-encapsulated metallic sliver nanocapsules

AgNPs

Ag nanoparticles

SEM

scanning electron microscopy

HRTEM

high resolution transmission electron microscope

XRD

X-ray diffraction

ICP-OES

inductively coupled plasma optical emission spectrometer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge the financial sponsorship by the National Natural Science Foundation of China (51571195, 51871219, 51590883), We also gratefully acknowledge support of the National Key R&D Program of China (No. 2017YFA0206301).

References

  1. 1.
    G. Taubes, Science, 321, 356 (2008).PubMedGoogle Scholar
  2. 2.
    L. C. Huang, S. Narayanan, R. L. Redfern and A. M. Mcdermott, Invest. Ophthalmol. Vis. Sci., 43, 82 (2002).PubMedGoogle Scholar
  3. 3.
    M. M. Javadpour, M. M. Juban, W.-C. J. Lo, S. M. Bishop, J. B. Alberty, S. M. Cowell, C. L. Becker and M. L. Mclaughlin, J. Med. Chem., 39, 3107 (1996).PubMedGoogle Scholar
  4. 4.
    L. A. T. W. Asri, M. Crismaru, S. Roest, Y. Chen, O. Ivashenko, P. Rudolf, J. C. Tiller, H. C. Van Der Mei, T. J. A. Loontjens and H. J. Busscher, Adv. Funct. Mater., 24, 346 (2014).Google Scholar
  5. 5.
    M. Kazemzadeh-Narbat, B. F. Lai, C. Ding, J. N. Kizhakkedathu, R. E. Hancock and R. Wang, Biomaterials, 34, 5969 (2013).PubMedGoogle Scholar
  6. 6.
    C. J. Waschinski, J. Zimmermann, U. Salz, R. Hutzler, G. Sadowski and J. C. Tiller, Adv. Mater., 20, 104 (2008).Google Scholar
  7. 7.
    A. Makovitzki, D. Avrahami and Y. Shai, Proc. Natl. Acad. Sci. U.S.A., 103, 15997 (2006).PubMedPubMedCentralGoogle Scholar
  8. 8.
    A. Zumbuehl, L. Ferreira, D. Kuhn, A. Astashkina, L. Long, Y. Yeo, T. Iaconis, M. Ghannoum, G. R. Fink, R. Langer and D. S. Kohane, Proc. Natl. Acad. Sci. U.S.A., 104, 12994 (2007).PubMedPubMedCentralGoogle Scholar
  9. 9.
    S. Pritz, M. Patzel, G. Szeimies, M. Dathe and M. Bienert, Org. Biomol. Chem., 5, 1789 (2007).PubMedGoogle Scholar
  10. 10.
    J. K. Pandey, R. K. Swarnkar, K. K. Soumya, P. Dwivedi, M. K. Singh, S. Sundaram and R. Gopal, Appl. Biochem. Biotechnol., 174, 1021 (2014).PubMedGoogle Scholar
  11. 11.
    N. Zafar, S. Shamaila, J. Nazir, R. Sharif, M. S. Rafique, J. Ul-Hasan, S. Ammara and H. Khalid, J. Mater. Sci. Technol., 32, 721 (2016).Google Scholar
  12. 12.
    C. Wang, S. Wu, M. Jian, J. Xie, L. Xu, X. Yang, Q. Zheng and Y. Zhang, Nano Res., 9, 1 (2016).Google Scholar
  13. 13.
    X.-C. Ma, Y. Dai, L. Yu and B.-B. Huang, Light: Science & Amp; Applications, 5, e16017 (2016).Google Scholar
  14. 14.
    C. Rigo, L. Ferroni, I. Tocco, M. Roman, I. Munivrana, C. Gardin, W. R. L. Cairns, V. Vindigni, B. Azzena, C. Barbante and B. Zavan, Int. J. Mol. Sci., 14, 4817 (2013).PubMedPubMedCentralGoogle Scholar
  15. 15.
    X. Liu, P.-Y. Lee, C.-M. Ho, V.C.H. Lui, Y. Chen, C.-M. Che, P. K. H. Tam and K. K. Y. Wong, ChemMedChem, 5, 468 (2010).PubMedGoogle Scholar
  16. 16.
    S. Chernousova and M. Epple, Angew. Chem. Int. Ed., 52, 1636 (2013).Google Scholar
  17. 17.
    J. A. Spadaro, T. J. Berger, S. D. Barranco, S. E. Chapin and R. O. Becker, Antimicrob. Agents Chemother., 6, 637 (1974).PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rahisuddin, S. A. Al-Thabaiti, Z. Khan and N. Manzoor, Bioprocess Biosystems Eng., 38, 1773 (2015).Google Scholar
  19. 19.
    Y N. Slavin, J. Asnis, U. O. Häfeli and H. Bach, J. Nanobiotechnol., 15, 65 (2017).Google Scholar
  20. 20.
    E. E. Fröhlich and E. Fröhlich, Int. J. Mol. Sci., 17, 509 (2016).PubMedPubMedCentralGoogle Scholar
  21. 21.
    K. S. Siddiqi, A. Husen and R. A. K. Rao, J. Nanobiotechnol., 16, 14 (2018).Google Scholar
  22. 22.
    M. C. G. R. D. G. Marotta, J. Mater. Sci. — Mater. Med., 15, 831 (2004).PubMedGoogle Scholar
  23. 23.
    L. F. Espinosa-Cristóbal, G. A. Martínez-Castañón, R. E. Martínez-Martínez, J. P. Loyola-Rodríguez, N. Patiño-Marín, J. F. Reyes-Macías and F. Ruiz, Mater. Lett., 63, 2603 (2009).Google Scholar
  24. 24.
    G. A. Sotiriou and S. E. Pratsinis, Environ. Sci. Technol., 44, 5649 (2010).PubMedGoogle Scholar
  25. 25.
    X. L. Cao, C. Cheng, Y. L. Ma and C. S. Zhao, J. Mater. Sci. — Mater. Med., 21, 2861 (2010).PubMedGoogle Scholar
  26. 26.
    S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary and K. Srinivasan, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 79, 594 (2011).Google Scholar
  27. 27.
    M. Kawashita, S. Tsuneyama, F. Miyaji, T. Kokubo, H. Kozuka and K. Yamamoto, Biomaterials, 21, 393 (2000).PubMedGoogle Scholar
  28. 28.
    S. Pal, Y. K. Tak and J. M. Song, Appl. Environ. Microbiol., 73, 1712 (2007).PubMedPubMedCentralGoogle Scholar
  29. 29.
    S. Jaiswal, B. Duffy, A. K. Jaiswal, N. Stobie and P. Mchale, Int. J. Antimicrob. Agents, 36, 280 (2010).PubMedGoogle Scholar
  30. 30.
    A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro and S. Paoletti, Biomacromolecules, 10, 1429 (2009).PubMedGoogle Scholar
  31. 31.
    A. J. Kora R. Manjusha and J. Arunachalam, Mater. Sci. Eng., C, 29, 2104 (2009).Google Scholar
  32. 32.
    X. Xu, Q. Yang, Y. Wang, H. Yu, X. Chen and X. Jing, Eur. Polym. J., 42, 2081 (2006).Google Scholar
  33. 33.
    P. Hartemann, P. Hoet, A. Proykova, T. Fernandes, A. Baun, W. De Jong, J. Filser, A. Hensten, C. Kneuer, J.-Y. Maillard, H. Norppa, M. Scheringer and S. Wjnhoven, Mater. Today, 18, 122 (2015).Google Scholar
  34. 34.
    P. Dubey, I. Matai, S. U. Kumar, A. Sachdev, B. Bhushan and P. Gopinath, Adv. Colloid Interface Sci., 221, 4 (2015).PubMedGoogle Scholar
  35. 35.
    J. Carrola, V. Bastos, I. Jarak, R. Oliveira-Silva, E. Malheiro, A. L. Daniel-Da-Silva, H. Oliveira, C. Santos, A. M. Gil and I. F. Duarte, Nanotoxicology, 10, 1105 (2016).PubMedGoogle Scholar
  36. 36.
    S. C. Sahu, J. Zheng, L. Graham, L. Chen, J. Ihrie, J. J. Yourick and R. L. Sprando, J. Appl. Toxicol., 34, 1155 (2014).PubMedGoogle Scholar
  37. 37.
    X. Jiang, C. Lu, M. Tang, Z. Yang, W. Jia, Y. Ma, P. Jia, D. Pei and H. Wang, Acs Omega, 3, 6770 (2018).PubMedPubMedCentralGoogle Scholar
  38. 38.
    S. Chernousova and M. Epple, Angew. Chem. Int. Ed. Engl., 52, 1636 (2013).PubMedGoogle Scholar
  39. 39.
    T. S. Sileika, H. D. Kim, P. Maniak and P. B. Messersmith, ACS Appl. Mater. Interfaces, 3, 4602 (2011).PubMedGoogle Scholar
  40. 40.
    C. Nie, Y. Yang, C. Cheng, L. Ma, J. Deng, L. Wang and C. Zhao, Acta Biomater., 51, 479 (2017).PubMedGoogle Scholar
  41. 41.
    P. Li, Z. Jia, Q. Wang, P. Tang, M. Wang, K. Wang, J. Fang, C. Zhao, F. Ren, X. Ge and X. Lu, J. Mater. Chem. B, 6, 7427 (2018).Google Scholar
  42. 42.
    M. Lv, S. Su, Y He, Q. Huang, W. Hu, D. Li, C. Fan and S. T. Lee, Adv. Mater., 22, 5463 (2010).PubMedGoogle Scholar
  43. 43.
    K. A. Rieger, H. J. Cho, H. F. Yeung, W. Fan and J. D. Schiffman, ACS Appl. Mater. Interfaces, 8, 3032 (2016).PubMedGoogle Scholar
  44. 44.
    L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu and P. K Chu, Biomaterials, 32, 5706 (2011).PubMedGoogle Scholar
  45. 45.
    H. Kong and J. Jang, Langmuir, 24, 2051 (2008).PubMedGoogle Scholar
  46. 46.
    J. Song, H. Kang, C. Lee, S. H. Hwang and J. Jang, ACS Appl. Mater. Interfaces, 4, 460 (2012).PubMedGoogle Scholar
  47. 47.
    M. Ahamed, M. S. Alsalhi and M. K. Siddiqui, Clin. Chim. Acta, 411, 1841 (2010).PubMedGoogle Scholar
  48. 48.
    B. S. Harrison and A. Atala, Biomaterials, 28, 344 (2007).PubMedGoogle Scholar
  49. 49.
    C. H. Tao, T. Chen, F. Ma, H. Liu, X. Li and S. Lin, J. Nanosci. Nanotechnol., 19, 2211 (2019).PubMedGoogle Scholar
  50. 50.
    Y. Qi, T.-Y. Xing, J. Zhao, G.-J. Weng, J.-J. Li, J. Zhu and J.-W. Zhao, J. Alloys Compd., 776, 934 (2019).Google Scholar
  51. 51.
    H. Wang, Y. Y. Dai, D. Y. Geng, S. Ma, D. Li, J. An, J. He, W. Liu and Z. D. Zhang, Nanoscale, 7, 17312 (2015).PubMedGoogle Scholar
  52. 52.
    A. K. Karumuri, D. P. Oswal, H. A. Hostetler and S. M. Mukhopadhyay, Mater. Lett., 109, 83 (2013).Google Scholar
  53. 53.
    O. Choi and Z. Hu, Environ. Sci. Technol., 42, 4583 (2008).PubMedGoogle Scholar
  54. 54.
    M. Jose Ruben, E. Jose Luis, C. Alejandra, H. Katherine, J. B. Kouri, R. Jose Tapia and Y. Miguel Jose, Nanotechnology, 16, 2346 (2005).Google Scholar
  55. 55.
    K B. Holt and A. J. Bard, Biochemistry, 44, 13214 (2005).PubMedGoogle Scholar
  56. 56.
    G. A. Sotiriou, A. Meyer, J. T. N. Knijnenburg, S. Panke and S. E. Pratsinis, Langmuir, 28, 15929 (2012).PubMedGoogle Scholar
  57. 57.
    T. Hamouda and J. R. Baker, Jr., J. Appl. Microbiol., 89, 397 (2000).PubMedGoogle Scholar
  58. 58.
    I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 275, 177 (2004).PubMedGoogle Scholar
  59. 59.
    A. Shahzad, H. Saeed, M. Iqtedar, S. Z. Hussain, A. Kaleem, R. Abdullah, S. Sharif, S. Naz, F. Saleem, A. Aihetasham and A. Chaudhary, J. Nanomater., 2019, 14 (2019).Google Scholar
  60. 60.
    C. Liao, Y. Li and S. C. Tjong, Int. J. Mol. Sci., 20, 449 (2019).PubMedCentralGoogle Scholar
  61. 61.
    G. Gahlawat, S. Shikha, B. S. Chaddha, S. R. Chaudhuri, S. Mayilraj and A. R. Choudhury, Microb. Cell Fact, 15, 25 (2016).PubMedPubMedCentralGoogle Scholar
  62. 62.
    R. Behra, L. Sigg, J. D. Clift Martin, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink and B. Rothen-Rutishauser, J. Royal Society Interface, 10, 20130396 (2013).Google Scholar
  63. 63.
    Y. F. Jia, C. J. Steele, I. P. Hayward and K. M. Thomas, Carbon, 36, 1299 (1998).Google Scholar
  64. 64.
    M. L. Toebes, J. M. P. Van Heeswijk, J. H. Bitter, A. Jos Van Dillen and K. P. De Jong, Carbon, 42, 307 (2004).Google Scholar
  65. 65.
    N. A. Amro, L. P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery and G.-Y Liu, Langmuir, 16, 2789 (2000).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering and Institute for Advanced MaterialsJiangsu UniversityZhenjiangChina
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations