Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1932–1939 | Cite as

Enhanced oxygen evolution reaction over glassy carbon electrode modified with NiOx and Fe3O4

  • Reham Helmy TammamEmail author
  • Amany Mohamed Fekry
  • Mahmoud Mohamed Saleh
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 73 Downloads

Abstract

Magnetite iron oxide (Fe3O4)/nickel oxide (NiOx) modified glassy carbon (GC) electrode shows enhancement of oxygen evolution reaction (OER) compared to GC electrode modified with single NiOx or Fe3O4 nanoparticles. Many techniques such as linear and cyclic sweep voltammetry, electrochemical impedance spectroscopy (EIS) have been employed. Field-emission scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) are both used for characterization of the electrocatalysts. Effect of loading amount of both NiOx and Fe3O4 and the order of deposition on the OER was studied. A significant improvement of the electrocatalytic properties of the Fe3O4/NiOx binary catalyst modified GC is obtained when NiOx is electrodeposited on GC/Fe3O4 (i.e. GC/Fe3O4/NiOx) compared to GC/NiOx/Fe3O4 (where NiOx is deposited first on the GC then Fe3O4). The use of GC/Fe3O4/NiOx (where Fe3O4 is deposited first on the GC then NiOx) for OER in alkaline solution support higher currents and consequently negative shifts of the onset potential of OER compared to that of GC/NiOx or GC/Fe3O4. The obtained electrochemical impedance parameters confirmed the above conclusions. Tafel parameters confirm the superior activity of GC/Fe3O4/NiOx and give insight into the mechanism of the OER on the above electrodes.

Keywords

OER Fe3O4 NiOx Catalysis Nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2019_381_MOESM1_ESM.pdf (92 kb)
Enhanced oxygen evolution reaction over glassy carbon electrode modified with NiOx and Fe3O4

References

  1. 1.
    X. Liu, Z. Sun, S. Cui and P. Du, Electrochim. Acta, 187, 381 (2016).Google Scholar
  2. 2.
    M. Roca-Ayats, E. Herreros, G. García, M. A. Pena and M. V. Martínez-Huerta, Appl. Catal. B: Environ., 183, 53 (2016).Google Scholar
  3. 3.
    D. Chen and S. D. Minteer, J. Power Sources, 284, 27 (2015).Google Scholar
  4. 4.
    Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. He, Int. J. Hydrogen Energy, 40, 13258 (2015).Google Scholar
  5. 5.
    B. B. Zhang, J. C. Xu, P. F. Wang, Y. B. Han, B. Hong, H. X. Jin, D. F. Jin, X. L. Peng, J. Li, J. Gong, H. L. Ge, Z. W. Zhu and X. Q. Wang, J. Alloys Compd., 662, 348 (2016).Google Scholar
  6. 6.
    M. Gong, Y. G. Li, H. L. Wang, Y. Y. Liang, J. Z. Wu, J. G. Zhou, J. Wang, T. Regier, F. Wei and H. J. Dai, J. Am. Chem. Soc., 135, 8452 (2013).Google Scholar
  7. 7.
    K. Akihiko and M. Yugo, Chem. Soc. Rev., 38, 253 (2009).Google Scholar
  8. 8.
    F. Y. Cheng and J. Chen, Chem. Soc. Rev., 41, 2172 (2012).PubMedGoogle Scholar
  9. 9.
    Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. L. Chen, K. Hamad-Schifferli and Y. Shao-Horn, J. Am. Chem. Soc., 132, 12170 (2010).PubMedGoogle Scholar
  10. 10.
    M. E. G. Lyons and M. P. Brandon, J. Electroanal. Chem., 641, 119 (2010).Google Scholar
  11. 11.
    Y. Zhang, X. Cao, H. Yuan, W. Zhang and Z. Zhou, Int. J. Hydrogen Energy, 24, 529 (1999).Google Scholar
  12. 12.
    W. J. King and A. C. Tseung, Electrochim. Acta, 19, 493 (1974).Google Scholar
  13. 13.
    J. Haenen, W. Visscher and E. Barendrecht, J. Electroanal. Chem., 208, 297 (1986).Google Scholar
  14. 14.
    Y. M. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 3, 399 (2012).PubMedGoogle Scholar
  15. 15.
    W. H. Lee and H. Kim, Catal. Comm., 12, 408 (2011).Google Scholar
  16. 16.
    W. Hu, Y. Q. Wang, X. H. Hu, Y. Q. Zhou and S. L. Chen, J. Mater. Chem., 22, 6010 (2012).Google Scholar
  17. 17.
    J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and S. H. Yang, Science, 334, 1383 (2011).PubMedGoogle Scholar
  18. 18.
    C. Jin, X. Cao, L. Zhang, C. Zhangand, R. Yang, J. Power Sources, 241, 225 (2013).Google Scholar
  19. 19.
    M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng and S. H. Yu, J. Am. Chem. Soc., 134, 2930 (2012).PubMedGoogle Scholar
  20. 20.
    D. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra and D. G. Nocera, J. Am. Chem. Soc., 134, 6801 (2012).PubMedGoogle Scholar
  21. 21.
    K. Kadakia, M. K. Datta, P. H. Jampani, S. K. Park and P. N. Kumta, J. Power Sources, 222, 313 (2013).Google Scholar
  22. 22.
    B. G. Lu, D. X. Cao, P. Wang, G. L. Wang and Y. Y. Gao, Int. J. Hydrogen Energy, 36, 72 (2011).Google Scholar
  23. 23.
    W. Bian, Z. Yang, P. Strasser and R. Yang, J. Power Sources, 250, 196 (2014).Google Scholar
  24. 24.
    B. Kumar, S. Saha, K. Ojha and A. K. Ganguli, Mater. Res. Bull., 64, 283 (2015).Google Scholar
  25. 25.
    A. S. Danial, M. M. Saleh, S. A. Salih and M. I. Awad, J. Power Sources, 293, 101 (2015).Google Scholar
  26. 26.
    A. M. Ghonim, B. E. El-Anadouli and M. M. Saleh, Electrochim. Acta, 114, 713 (2013).Google Scholar
  27. 27.
    R. H. Tammam, A. M. Fekry and M. M. Saleh, Int. J. Hydrogen Energy, 40, 275 (2015).Google Scholar
  28. 28.
    R.M.A. Hameed and R.M. El-Sherif, Appl. Catal. B: Environ., 162, 217 (2015).Google Scholar
  29. 29.
    M. Görlin, M. Gliech, J. F. de Araújo, S. Dresp, A. Bergmann and P. Strasser, Catal. Today, 262, 65 (2016).Google Scholar
  30. 30.
    S. Yoon, J.-Y. Yun, J.-H. Lim and B. Yoo, J. Alloys Compd., 693, 964 (2017).Google Scholar
  31. 31.
    B. P. Lu, B. Jing, X. J. Bo, L. D. Zhu and L. P. Guo, Electrochim. Acta, 55, 8724 (2010).Google Scholar
  32. 32.
    D. A. Corrigan, J. Electrochem. Soc., 134, 377 (1987).Google Scholar
  33. 33.
    F. Dionigi and P. Strasser, Adv. Energy Mater., 6, 1600621 (2016).Google Scholar
  34. 34.
    J. R. Galán-Mascarós, Chem. Electrochem., 2, 37 (2015).Google Scholar
  35. 35.
    I. Roger and M. D. Symes, J. Mater. Chem., 4, 6724 (2016).Google Scholar
  36. 36.
    I. Roger, M. A. Shipman and M. D. Symes, Nat. Rev. Chem., 1, 0003 (2017).Google Scholar
  37. 37.
    S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud and A. T. Bell, J. Phys. Chem. C, 119, 7243 (2015).Google Scholar
  38. 38.
    A. B. Moghaddam, M. R. Ganjali, R. Dinarvand, T. Razavi, A. A. Saboury, A. A.M. Movahedi and P. Norouz, J. Electroanal. Chem., 614, 83 (2008).Google Scholar
  39. 39.
    S. M. El-Refaei, M. M. Saleh and M. I. Awad, J. Power Sources, 223, 125 (2013).Google Scholar
  40. 40.
    E. Laouini, Y. Berghoute, J. Douch, H. Mendonca, M. Hamdani and M. I. S. Pereira, J. Appl. Electrochem., 39, 2469 (2009).Google Scholar
  41. 41.
    Z. Ding, C. Yang and Q. Wu, Electrochim. Acta, 49, 3155 (2004).Google Scholar
  42. 42.
    M. Kumar, R. Awasthi, A. S. K. Sinh and R. N. Singh, Int. J. Hydrogen Energy, 36, 8831 (2011).Google Scholar
  43. 43.
    M. Isabel Godinho, M. Alice Catarino, M. I. da Silva Pereira, M. H. Mendonca and F. M. Costa, Electrochim. Acta, 47, 4307 (2002).Google Scholar
  44. 44.
    M. H. Mendonça, M. I. Godinho, M. A. Catarino, M. I. da Silva Pereira and F. M. Costa, Solid State Sci., 4, 175 (2002).Google Scholar
  45. 45.
    N. Jiang and H.-M. Meng, Surf. Coat. Technol., 206, 4362 (2012).Google Scholar
  46. 46.
    F. Rosalbino, S. Delsante, G. Borzone and G. Scavino, Int. J. Hydrogen Energy, 38, 10170 (2013).Google Scholar
  47. 47.
    S. M. El-Refaei, M. M. Saleh and M. I. Awad, J. Solid-State Electrochem., 18, 5 (2014).Google Scholar
  48. 48.
    S. M. El-Refaei, M. I. Awad, B. E. El-Anadouli and M. M. Saleh, Electrochim. Acta, 92, 460 (2013).Google Scholar
  49. 49.
    J. M. Gonçalves, T. A. Matias, L. P. Saravia, M. Nakamura, J. S. Bernardes, M. Bertotti and K. Araki, Electrochim. Acta, 267, 161 (2018).Google Scholar
  50. 50.
    L. Trotochaud, S. L. Young, J. K. Ranney and S. W. Boettcher. J. Am. Chem. Soc., 136, 6744 (2014).PubMedGoogle Scholar
  51. 51.
    Q. Liu, H. Wang, X. Wang, R. Tong, X. Zhou, X. Peng, H. Wang, H. Tao and Z. Zhang. Int J. Hydrogen Energy, 42, 5560 (2017).Google Scholar
  52. 52.
    Q. Luo, M. Peng, X. Sun, Y. Luo and A. M. Asiri, Int. J. Hydrogen Energy, 41, 8785 (2016).Google Scholar
  53. 53.
    X. Yang, J. Pan, Y. Nie, Y. Sun and P. Wan, Int. J. Hydrogen Energy, 42, 26575 (2017).Google Scholar
  54. 54.
    C. Zhang, Y. Xie, H. Deng, C. Zhang, J. W. Su, Y. Dong and J. Lin, Int. J. Hydrogen Energy, 43, 7299 (2018).Google Scholar
  55. 55.
    H.B. Hassan and R. H. Tammam, Solid State Ionics, 320, 325 (2018).Google Scholar
  56. 56.
    R. H. Tammam and H. B. Hassan, J. Electrochem. Soc., 166, F729 (2019).Google Scholar
  57. 57.
    D. D. Macdonald, Electrochim. Acta, 51, 1376 (2006).Google Scholar
  58. 58.
    A. M. Fekry and R. H. Tammam, Ind. Eng. Chem. Res. J., 53, 2911 (2014).Google Scholar
  59. 59.
    R. H. Tammam and A. M. Fekry, J. Mater. Eng. Perform., 23, 715 (2014).Google Scholar
  60. 60.
    E. Gombos, K. Barkács, T. Felföldi, C. Vértes, M. Makó, G. Palkó and G. Záray, Microchem. J., 107, 115 (2013).Google Scholar
  61. 61.
    V. K. Sharma, Coord. Chem. Rev., 257, 495 (2013).Google Scholar
  62. 62.
    J. Kubisztal and A. Budniok, Int. J. Hydrogen Energy, 33, 4488 (2008).Google Scholar
  63. 63.
    D. Cibrev, M. Jankulovska, T. Lana-Villarreal and R. Gómez, Int. J. Hydrogen Energy, 38, 2746 (2013).Google Scholar
  64. 64.
    M. F. Kibria and M. S. Mridha, Int. J. Hydrogen Energy, 21, 179 (1996).Google Scholar
  65. 65.
    R. H. Tammam and M. M. Saleh, J. Electroanal. Chem., 794, 189 (2017).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Reham Helmy Tammam
    • 1
    Email author
  • Amany Mohamed Fekry
    • 1
  • Mahmoud Mohamed Saleh
    • 1
  1. 1.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations