Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1890–1899 | Cite as

Influential extraction parameters for the characterization of chitosan from crab shell

  • Carla-cezarina Pădurețu
  • Raluca Isopescu
  • Ileana RăuEmail author
  • Manuela Rossemary Apetroaei
  • Verginica Schröder


Chitosan, one of the most interesting and intriguing biopolymer, can be extracted from different marine waste. The present paper focuses on the chitosan extraction procedure from Macropipus holsatus crab waste. Because the deacetylation degree is the most important characteristic of chitosan, the influence of specific operating parameters during deacetylation treatment was analyzed by statistical analysis and mathematical modelling using artificial neural networks (ANN). The ANN simulation put into evidence the manner that the deacetylation degree is influenced by the considered operating conditions and enabled the identification of optimal operating conditions in order to obtain a chitosan with a relatively high deacetylation degree. The obtained chitosan was characterized by various methods, including physical-chemical analysis, structure identification and crystallinity index. The main effects as well as the interaction effects for some physical-chemical properties were studied to establish if and how the chitosan properties are affected by the extraction procedure.


Crabs Chitin Chitosan Deacetylation Degree Macropipus Holsatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ul-Islam, N. Shah, J. H. Ha and J. K. Park, Korean J. Chem. Eng., 28, 1736 (2011).CrossRefGoogle Scholar
  2. 2.
    Z. Afsarian and Y. Mansourpanah, Korean J. Chem. Eng., 35, 1867 (2018).CrossRefGoogle Scholar
  3. 3.
    S. D. Ippólito, J. R. Mendieta, M. C. Terrile, C. V Tonón, A. Y Mansilla, S. Colman, L. Albertengo, M. S. Rodríguez and C. A. Casalongué, in Biological activities and application of marine polysaccharides, E. A. Shalaby (Ed.), Intech Open, Croatia (2017).Google Scholar
  4. 4.
    F. R. De Abreu, S. P. Campana-Filho, Polímeros: Ciência e Tecnologia, 15, 79 (2005).CrossRefGoogle Scholar
  5. 5.
    H. S. Kim, M.-R. Park, S.-K. Kim and G.-T. Jeong, Korean J. Chem. Eng., 35, 1290 (2018).CrossRefGoogle Scholar
  6. 6.
    M. H. Struszczyk, Polimery, 47, 316 (2002).CrossRefGoogle Scholar
  7. 7.
    E. S. de Alvarenga, in Biotechnology of Biopolymers, M. Elnashar Ed., IntechOpen, Croatia (2011).Google Scholar
  8. 8.
    G. A. M. Ruiz and H. F. Z. Corrales, in Biological Activities and Application of Marine Polysaccharides, E. A. Shalaby (Ed.), Croatia, InTech Open (2017).Google Scholar
  9. 9.
    O. C. Wilson Jr. and T. Omokanwaye, in Biopolymer Nanocomposites: Processing, properties and applications, A. Dufresne (Ed.), R. F. Grossman and D. Nwabunma (Series Eds.), Wiley Series On Polymer Engineering and Technology (2013).Google Scholar
  10. 10.
    G. Lodhi, Y.-S. Kim, J.-W Hwang, S.-K. Kim, Y.-J. Jeon, J.-Y. Je, C.-B. Ahn, S.-H. Moon, B.-T. Jeon and P.-J. Park, BioMed Res. Int., 2014, 654913 (2014).PubMedPubMedCentralGoogle Scholar
  11. 11.
    M. H. Dehghani, A. Zarei, A. Mesdaghinia, R. Nabizadeh, M. Ali-mohammadi and M. Afsharnia, Korean J. Chem. Eng., 34, 757 (2017).CrossRefGoogle Scholar
  12. 12.
    H.-J. Choi and S.-W. Yu, Korean J. Chem. Eng., 35, 2198 (2018).CrossRefGoogle Scholar
  13. 13.
    X. Lin, L. Wang, S. Jiang, L. Cui and G. Wu, Korean J. Chem. Eng., 36, 1102 (2019).CrossRefGoogle Scholar
  14. 14.
    S. Karimidost, E. Moniri and M. Miralinaghi, Korean J. Chem. Eng., 36, 1115 (2019).CrossRefGoogle Scholar
  15. 15.
    J. Pan, Z. Ou, L. Tang and H. Shi, Korean J. Chem. Eng., 36, 729 (2019).CrossRefGoogle Scholar
  16. 16.
    F. Ardeshiri, A. Akbari, M. Peyravi and M. Jahanshahi, Korean J. Chem. Eng., 36, 255 (2019).CrossRefGoogle Scholar
  17. 17.
    N. N. Bahrudin and M. A. Nawi, Korean J. Chem. Eng., 36, 478 (2019).CrossRefGoogle Scholar
  18. 18.
    Z. Li, Z. Ma, Y. Xu, X. Wang, Y. Sun, R. Wang, J. Wang, X. Gao and J. Gao, Korean J. Chem. Eng., 35, 1716 (2018).CrossRefGoogle Scholar
  19. 19.
    F. A. Ahing and N. Wid, Int. J. Adv. Appl. Sci., 3, 31 (2016).CrossRefGoogle Scholar
  20. 20.
    R. F. Weska, J. M. Moura, L. M. Batista, J. Rizzi and L. A. A. Pinto, J. Food Eng., 80, 749 (2007).CrossRefGoogle Scholar
  21. 21.
    KE. Tokatli and A. Demirdöven, J. Food Process. Preserv., 42, e13494 (2017).CrossRefGoogle Scholar
  22. 22.
    A. Percot, C. Viton and A. Domard, Biomacromolecules, 4, 12 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    B. B. Seghir and M. H. Benhamza, J. Food Measurement and Characterization, 11, 1137 (2017).CrossRefGoogle Scholar
  24. 24.
    N. D. Takarina, A. A. Nasrul and A. Nurmarina, Int. J. Pharma Medicine and Biological Sciences, 6, 16 (2017).CrossRefGoogle Scholar
  25. 25.
    M. Djaeni, Reaktor, 7, 37 (2003).CrossRefGoogle Scholar
  26. 26.
    F. Boßelmann, P. Romano, H. Fabritius, D. Raabe and M. Epple, Thermochim. Acta, 463, 65 (2007).CrossRefGoogle Scholar
  27. 27.
    S. H. Lv, in Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, F. Pacheco-Torgal, V. Ivanov, N. Karak and H. Jonkers Eds., Elsevier (2016).Google Scholar
  28. 28.
    E. Szymańsk and K. Winnicka, Mar. Drugs, 13(4), 1819 (2015).CrossRefGoogle Scholar
  29. 29.
    I. Younes and M. Rinaudo, Mar. Drugs, 13(3), 1133 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    I. Desportes and J. Schrével, in Treatise on Zoology — Anatomy, Taxonomy, Biology. The Gregarines — Vol. II, Desportes I. and Schrével J. (Eds.), BRILL (2013).Google Scholar
  31. 31.
    R. Ingle, in Crayfishes, Lobsters and Crabs of Europe: An Illustrated Guide to common and traded species, R. Ingle Ed., Springer Science and Business Media (2012).Google Scholar
  32. 32.
    M. C. Băcescu, Fauna Republicii Socialiste România: Vol. IV: Crustacea. Fascicula 9: Decapoda, Editura Academiei Republicii Socialiste România, Bucureşti (1967).Google Scholar
  33. 33.
    K. E. Carpenter and N. De Angelis, in The living marine resources of the Eastern Central Atlantic. Volume 1: Introduction, crustaceans, chitons and cephalopods, K. E. Carpenter, N. De Angelis (Eds.), Rome (2014).Google Scholar
  34. 34.
    D. C. Montgomery, Design and Analysis of Experiments, 8th Ed., John Wiley & Sons, Inc., Arizona State University (2013).Google Scholar
  35. 35.
    R. Czechowska-Biskup, D. Jarosińska, B. Rokita, P. Ulański and J. M. Rosiak, Prog. Chem. Appl. Chitin and Its Derivatives, XVII, 5 (2012).Google Scholar
  36. 36.
    J. B. Dima, C. Sequeiros and N. Zaritzky, in Biological Activities and Application of Marine Polysaccharides, E. A. Shalaby (Ed.), Intech (2017).Google Scholar
  37. 37.
    F. A. Al Sagheer, M. A. Al-Sughayer, S. Muslim and M. Z. Elsabee, Carbohydr. Polym., 77, 410 (2009).CrossRefGoogle Scholar
  38. 38.
    W. Wang, S. Bo, S. Li and W. Qin, Int. J. Biol. Macromol., 13, 284 (1991).CrossRefGoogle Scholar
  39. 39.
    S.-O. Fernandez-Kim, Louisiana State University Master’s Thesis (2004).Google Scholar
  40. 40.
    AOAC 2000 standard, Determination of moisture content.Google Scholar
  41. 41.
    J. Brugnerotto, J. Lizardi, F. M. Goycoolea, W. Argüelles-Monal, J. Desbrières and M. Rinaudo, Polymer, 42, 3578 (2001).Google Scholar
  42. 42.
    D. R. Baughman and Y. A. Liu, Neural Networks in Bioprocessing and Chemical Engineering, Academic Press, San Diego (1995).Google Scholar
  43. 43.
    J. Kumirska, M. Czerwicka, Z. Kaczyńsi, A. Bychowska, K. Brzozovski, J. Thöming and P. Stepnovski, Mar. Drugs, 8, 1589 (2010).CrossRefGoogle Scholar
  44. 44.
    Y. Liu, Y. Bai and H. Liu, in Handbook of Analysis of Active Compounds in Functional Foods, L. M. L. Nollet and Fidel Toldra (Eds.), CRC Press (2012).Google Scholar
  45. 45.
    J. Csaszar and N. M. Bizony, Acta Physica et Chemica, 31, 730 (1985).Google Scholar
  46. 46.
    S. Gaisford, in Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, M. E. Aulton and K. M. G. Taylor (Eds.), 5th Ed., Elsevier (2018).Google Scholar
  47. 47.
    A. T. Balaban, M. Banciu and I.I. Pogany, Aplicaţii ale metodelor fizice în chimia organică, Ed. Ştiinţifică şi Enciclopedică, Bucureşti (1983).Google Scholar
  48. 48.
    M. Rinaudo, Prog. Polym. Sci., 31, 608 (2006).CrossRefGoogle Scholar
  49. 49.
    M. Kaya, T. Baran, A. Mentes, M. Asaroglu, G. Sezen and K. O. Tozak, Food Biophysics, 9, 145 (2014).CrossRefGoogle Scholar
  50. 50.
    H. E. Knidri, R. Belaabed, R. E. Khalfaouy, A. Laajeb, A. Addaou and A. Lahsini, JMES, 8, 3648 (2017).Google Scholar
  51. 51.
    I. K. D. Dimzon and T. P. Knepper, Int. J. Biol. Macromol., 72, 939 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    E. M. Dahmane, M. Taourirte, N. Eladlani and M. Rhazi, Int. J. Polym. Anal. Charact., 19, 342 (2014).CrossRefGoogle Scholar
  53. 53.
    R. S. C. M. Q. Antonino, B. R. P. L. Fook, V. A. O. Lima, R. I. F. Rached, E. P. N. Lima, R. J. S. Lima, C. A. P. Covas and M. V. L. Fook, Marine Drugs, 15, 8 (2017).Google Scholar
  54. 54.
    A. Alishahi, A. Mirvaghefi, M. R. Tehrani, H. Farahmand, S. A. Shojaosadati, F. A. Dorkoosh and M. Z. Elsabee, J. Polym. Environ., 19, 781 (2011).CrossRefGoogle Scholar
  55. 55.
    L. Zelencova, S. Erdoğan, T. Baran and M. Kaya, Polym. Sci. — Ser. A, 57, 440 (2015).CrossRefGoogle Scholar
  56. 56.
    C. T. G. V. M. T. Pires, J. A. P. Vilela and C. Airoldi, Procedia Chem., 9, 222 (2014).CrossRefGoogle Scholar
  57. 57.
    M. Ioelovich, Res. Rev.: J. Chem., 3, 7 (2014).Google Scholar
  58. 58.
    NIOSH Manual of Analytical Methods (NMAM), Silica Crystalline by XRD, 4th Ed., method 7500 (2003).Google Scholar
  59. 59.
    Standard X-ray Diffraction Powder Patterns, NBS Monograph 25, section 18 (S18), U.S. Department of Commerce/National Bureau of Standards (1981).Google Scholar
  60. 60.
    B. Focher, A. Naggi, G. Torri, A. Cosani and M. Terbojevich, Carbohydr. Polym., 18, 43 (1992).CrossRefGoogle Scholar
  61. 61.
    Y. Zhang, C. Xue, Y. Xue, R. Gao and X. Zhang, Carbohydr. Res., 340(11), 1914 (2005).PubMedCrossRefGoogle Scholar
  62. 62.
    N. M. Sarbon, S. Sandanamsamy, S. F. S. Kamaruzaman and F. Ahmad, J. Food Sci. Technol., 52(7), 4266 (2014).PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Carla-cezarina Pădurețu
    • 1
  • Raluca Isopescu
    • 2
  • Ileana Rău
    • 1
    Email author
  • Manuela Rossemary Apetroaei
    • 3
  • Verginica Schröder
    • 4
  1. 1.University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General ChemistryBucharestRomania
  2. 2.University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Chemical and Biochemical EngineeringBucharestRomania
  3. 3.“MIRCEA CEL BATRAN” Naval Academy, Department of Naval and Port Engineering and Management, Faculty of Navigation and Naval ManagementConstantaRomania
  4. 4.University OVIDIUS of Constanta, Faculty of PharmacyConstantaRomania

Personalised recommendations