Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1900–1914 | Cite as

Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms

  • Anuj Kumar Prajapati
  • Monoj Kumar MondalEmail author
Separation Technology, Thermodynamics
  • 72 Downloads

Abstract

Nanoporous activated garlic stem carbon (AGSC) was prepared from garlic stem waste and used to remove As(III)from synthetic water under complete batch experiments. Characterization studies of AGSC were performed by FTIR, SEM, EDX, BET, XPS and XRD techniques. Batch adsorption experiments were carried out to study the adsorption of As(III) onto AGSC. Maximum removal of 93.3% of As(III) was obtained at optimum condition of pH 6, the adsorbent dose 5 g/L, equilibrium time 150 min, initial As(III) concentration 400 µg/L and temperature 298 K. Both Langmuir and Temkin isotherm model fitted well to the experimental data as compared to Freundlich isotherm. Kinetics indicated that the adsorption of As(III) was more suitable for pseudo-second-order than pseudo-first-order and Elovich model. The mass transfer mechanism could be described by Weber-Morris and Boyd mass transfer model. The maximum adsorption capacity of AGSC for As(III) removal was found to be 192.30 µg/g. The negative enthalpy and free energy change indicated that the adsorption process of As(III) onto AGSC was exothermic and spontaneous. The negative value of entropy change suggested decreasing randomness at the AGSC-aqueous As(III) interface during As(III) adsorption.

Keywords

As(III) Adsorption AGSC Characterization Kinetics Mass Transfer Models and Desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors are grateful to Indian Institute of Technology (BHU), Varanasi, India, for providing the necessary facilities related to research work. The authors also express gratitude for the financial assistance provided by MHRD, India.

Supplementary material

11814_2019_376_MOESM1_ESM.pdf (126 kb)
Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms

References

  1. 1.
    S. Ayoob, A. K. Gupta and V.T. Bhat, Crit. Rev. Environ. Sci. Technol., 38, 401 (2008).Google Scholar
  2. 2.
    Y. Wang and D. C. W Tsang, J. Environ. Sci., 25, 2291 (2013).Google Scholar
  3. 3.
    S. M. Cohen, L. L. Arnold, B. D. Beck, A. S. Lewis and M. Eldan, Crit. Rev. Toxicol, 43, 711 (2013).PubMedGoogle Scholar
  4. 4.
    World Health Organization (WHO)/UNICE, Progress on drinking-water and sanitation (2014).Google Scholar
  5. 5.
    M. Vithanage, I. Herath, S. Joseph, J. Bundschuh, N. Bolan, Y. S. Ok, M. B. Kirkham and J. Rinklebe, Carbon, 113, 219 (2017).Google Scholar
  6. 6.
    P. L. Smedley and D. G. Kinniburgh, Appl. Geochem., 17, 517 (2002).Google Scholar
  7. 7.
    A. Kumar, J. Pandey and S. Kumar, Korean J. Chem. Eng., 35(I), 456 (2018).Google Scholar
  8. 8.
    T. Nawaz, M. Iqbal, S. Zulfiqar and M. I. Sarwar, Korean J. Chem. Eng., 35(6), 860 (2018).Google Scholar
  9. 9.
    N. N. Greenwood and A. Earnshaw, Chemistry of the elements, 3 thEd., Pergamon Press, Oxford, United Kingdom (1984).Google Scholar
  10. 10.
    World Health Organization (WHO), Guidelines for Drinking-water Quality, 4 thEd. (2011).Google Scholar
  11. 11.
    P. B. Tchounwou, B. Wilson and A. Ishaque, Rev. Environ. Health, 14, 211 (1999).PubMedGoogle Scholar
  12. 12.
    J. E. Greenleaf, J. C. Lin and A. K. Sengupta, Environ. Prog., 25, 300 (2006).Google Scholar
  13. 13.
    J.W. Wang, D. Bejan and N.J. Bunce, Environ. Sci. Technol., 37, 4500 (2003).PubMedGoogle Scholar
  14. 14.
    V. Pallier, G. Feuillade-Cathalifaud, B. Serpaud and J. C. Bollinger, J. Colloid Interface Sci., 342, 26 (2011).Google Scholar
  15. 15.
    W. Wan, T.J. Pepping, T. Banerji, S. Chaudhari and D.E. Giammar, Water Res., 45, 384 (2011).PubMedGoogle Scholar
  16. 16.
    H. Park and H. Choi, Water Res., 45, 1933 (2011).PubMedGoogle Scholar
  17. 17.
    S. O. Lesmana, N. Febriana, F. E. Soetaredjo, J. Sunarso and S. Ismadji, Biochem. Eng. J., 44, 19 (2009).Google Scholar
  18. 18.
    M. Taheran, M. Naghdi, S. K. Brar, E. J. Knystautas, M. Verma, A. A. Ramirez, R. Y. Surampalli and J. R. Valero, Sci. Total Environ., 571, 772 (2016).PubMedGoogle Scholar
  19. 19.
    S. Liu, C. Ni, H. Su, H. Liu, R. Chen, P. Li and Y. Wei, RSC Adv., 6, 30840 (2016).Google Scholar
  20. 20.
    M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).Google Scholar
  21. 21.
    L. Li, X.L. Liu, H.Y. Geng, B. Hu, G.W Song and Z.S. Xu, J. Mater. Chem. A, 1, 10292 (2013).Google Scholar
  22. 22.
    P. Mondal, C. B. Majumder and B. Mohanty, Ind. Eng. Chem. Res., 46, 2550 (2007).Google Scholar
  23. 23.
    B. H. Hameed and A. A. Ahmad, J. Hazard. Mater., 164, 870 (2009).PubMedGoogle Scholar
  24. 24.
    J. Xua, L. Chena, H. Qu, Y. Jiao, J. Xie and G. Xing, Appl. Surf. Sci., 320, 674 (2014).Google Scholar
  25. 25.
    M. S. Podder and C. B. Majumdar, J. Mol. Liq., 2, 382 (2015).Google Scholar
  26. 26.
    C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012).Google Scholar
  27. 27.
    A. Swiatkowski, M. Pakula, S. Biniak and M. Walczyk, Carbon, 42, 3057 (2004).Google Scholar
  28. 28.
    Y. Su, X. Sun, X. Zhou, C. Dai and Y. Zhang, J. Environ. Sci., 36, 1 (2015).Google Scholar
  29. 29.
    H. Trevino-Cordero, L. G. Juarez-Aguilar, D. I. Mendoza-Castillo, V. Hernandez-Montoya, A. Bonilla-Petriciolet and M. A. Montes-Moran, Ind. Crops Prod., 42, 315 (2013).Google Scholar
  30. 30.
    S. Biniak, G. Szymanski, J. Siedlewski and A. Swiatkowski, Carbon, 35, 1799 (1997).Google Scholar
  31. 31.
    J. H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai and WK. Yuan, Carbon, 45, 785 (2007).Google Scholar
  32. 32.
    U. Shafique, A. Ijaz, M. Salman, W Zaman, N. Jamil and R. Rehman, J. Taiwan Inst. Chem. Eng., 43, 256 (2012).Google Scholar
  33. 33.
    Z. Gu, J. Fang and B. Deng, Environ. Sci. Technol., 39, 3833 (2005).PubMedGoogle Scholar
  34. 34.
    J. Youngran, F. Maohong, J. V. Leeuwen and J. F. Belczyk, J. Environ. Sci., 19, 910 (2007).Google Scholar
  35. 35.
    M. A. Alam, W. A. Shaikh, M. O. Alam, T. Bhattacharya, S. Chakraborty, B. Show and I. Saha, Appl. Water Sci., 8, 198 (2018).Google Scholar
  36. 36.
    Y. Chammui, P. Sooksamiti, W. Naksata, S. Thiansem and O. Arqueropanyo, Chem. Eng. J., 240, 202 (2014).Google Scholar
  37. 37.
    A. E. Nemr, A. Khaled, O. Abdelwahab and A. El-Sikaily, J. Hazard. Mater., 152, 263 (2008).PubMedGoogle Scholar
  38. 38.
    M. D. Meitei and M. N. V Prasad, Ecol. Eng., 71, 308 (2014).Google Scholar
  39. 39.
    A. Goswami, P. K. Raul and M. K. Purkait, Chem. Eng. Res. Des., 90, 1287 (2012).Google Scholar
  40. 40.
    H. Li, G. Huang, C. An, J. Hu and S. Yang, Ind. Eng. Chem. Res., 52, 15923 (2013).Google Scholar
  41. 41.
    M. K. Mondal, G. Mishra and P. Kumar, J. Sustain. Dev. Energy Water Environ. Syst., 3, 405 (2015).Google Scholar
  42. 42.
    V. Vadivelan and K. V. Kumar, J. Colloid Interface Sci., 286, 90 (2005).PubMedGoogle Scholar
  43. 43.
    S. Azizian, J. Colloid Interface Sci., 276, 47 (2004).PubMedGoogle Scholar
  44. 44.
    S. Srivastava, S. B. Agrawal and M. K. Mondal, Korean J. Chem. Eng., 33, 567 (2016).Google Scholar
  45. 45.
    C. Aharoni and F. C. Tompkins, Adv. Catal., 21, 1 (1970).Google Scholar
  46. 46.
    R. Narayan, R. P. Meena, A. K. Patel, A. K. Prajapati, S. Srivastava and M. K. Mondal, Environ. Prog. Sustain. Energy, 35, 95 (2015).Google Scholar
  47. 47.
    Y.F. Lam, L.Y. Lee, S.J. Chua, C.S. Shee and S. Gan, Ecotoxicol. Environ. Saf., 127, 61 (2016).PubMedGoogle Scholar
  48. 48.
    R. Soni and D. P. Shukla, Chemosphere, 219, 504 (2019).PubMedGoogle Scholar
  49. 49.
    M. A. Malana, R. B. Qureshi and M. N. Ashiq, Chem. Eng. J., 172, 721 (2011).Google Scholar
  50. 50.
    O. S. Thirunavukkarasu, T. Viraraghavan and K. S. Subramanian, Water SA, 29, 161 (2003).Google Scholar
  51. 51.
    V. K. Gupta, V. K. Saini and N. Jain, J. Colloid Interface Sci, 288, 55 (2005).PubMedGoogle Scholar
  52. 52.
    T. Turk and I. Alp, J. Ind. Eng. Chem., 20, 732 (2014).Google Scholar
  53. 53.
    N. V Vinh, M. Zafar, S.K. Behera and H.S. Park, Inf. J. Environ. Sci. Technol., 12, 1283 (2015).Google Scholar
  54. 54.
    D. S. Tavares, C. B. Lopes, J. P. Coelho, M. E. Sanchez, A. I. Garcia, A. C. Duarte, M. Otero and E. Pereira, Water Air Soil Pollut., 223, 2311 (2012).Google Scholar
  55. 55.
    M. E. Lee, P. Jeon, J. Kim and K. Baek, Korean J. Chem. Eng., 35(7), 1409 (2018).Google Scholar
  56. 56.
    L. Lin, W Qiu, D. Wang, Q. Huang, Z. Song and H. W. Chau, Ecotox. Environ. Safe., 144, 514 (2017).Google Scholar
  57. 57.
    U. Maheshwari, B. Mathesan and S. Gupta, Process Saf. Environ. Prot., 98, 198 (2015).Google Scholar
  58. 58.
    W J. Weber and J. C. Morris, J. Sanit. Eng. Div., 89, 31 (1993).Google Scholar
  59. 59.
    A.B. Albadarina, C. Mangwandi, A.A.H. Al-Muhtaseb, G.M. Walker, S. J. Allena and M. N. M. Ahmad, Chem. Eng. J., 179, 193 (2012).Google Scholar
  60. 60.
    S. Srivastava, S. B. Agrawal and M. K. Mondal, Ecol. Eng., 85, 56 (2015).Google Scholar
  61. 61.
    R. Foroutan, R. Mohammadi and B. Ramavandi, Korean J. Chem. Eng., 35(1), 234 (2018).Google Scholar
  62. 62.
    T. Keleti, Biochem. J., 209, 277 (1983).PubMedPubMedCentralGoogle Scholar
  63. 63.
    P. B. Bhaskar, A. K. Gupta, S. Ayoob and S. Kandu, Colloids Surf. A: Physicochemical. Eng. Aspects, 281, 237 (2006).Google Scholar
  64. 64.
    X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao and W Song, J. Mater. Chem. A, 1, 959 (2013).Google Scholar
  65. 65.
    G. Zhang, J. Qu, H. Liu and R. Wu, Water Res., 41, 1921 (2007).PubMedGoogle Scholar
  66. 66.
    R. Prabhakar and S. R. Samadder, J. Mol. Liq., 250, 192 (2018).Google Scholar
  67. 67.
    S. Zhang, H. Niu, Y. Cai, X. Zhao and Y. Shi, Chem. Eng. J., 158, 599 (2010).Google Scholar
  68. 68.
    S. R. Chowdhury and E. K. Yanful, J. Environ. Manage., 91, 2238 (2010).PubMedGoogle Scholar
  69. 69.
    T. G. Asere, K. Verbeken, D. A. Tessema, F. Fufa, C. V. Stevens and G. D. Laing, Environ. Sci. Pollut. Res., 24, 20446 (2017).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Technology, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations