Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1859–1868 | Cite as

Energy saving in carbon dioxide hydrate formation process using Boehmite nanoparticles

  • Vahab Montazeri
  • Masoud RahimiEmail author
  • Bahman Zarenezhad


This work reports on an attempt to save energy in the carbon dioxide hydrate formation process. The kinetics of carbon dioxide hydrate formation induced by synthesized Boehmite (AlOOH) nanoparticles was investigated at 274.15 K, different initial pressures (29, 32 and 35 bar), impeller speed (50, 100 and 200 rpm) and AlOOH concentrations (25, 50 75, 100, 200 ppm). It was also observed that there is a desirable concentration for AlOOH nanoparticles in which the maximum rate of gas consumption and minimum growth and induction time was obtained. According to the results at 29 bar and 100 rpm and in the presence of 50 ppm AlOOH, the gas consumption rate increased to 150%, while the induction time and growth time decreased about 82.8% and 46.1%, respectively. The maximum energy saving of 49.7% for 50 ppm AlOOH was observed, which is very important for industrial applications of carbon dioxide hydrate. The presented technique is useful for intensification of gas hydrate-based CO2 capture processes in the oil and gas industry with minimum energy consumption.


Energy Saving CO2 Capture Nanoparticles Hydrate Kinetics Boehmite 



initial pressure [MPa]


final pressure [MPa]


volume of gas [m3]


universal gas constant [Jmol−1K−1]


temperature [K]


rate of gas consumed [mol s−1]

\({\left({{{\rm{n}}_{C{O_2}}}} \right)_t}\)

mole number of CO2 in the gas phase measured at t

\({\left({{{\rm{n}}_{C{O_2}}}} \right)_{t + \Delta t}}\)

mole number of CO2 in the gas phase measured at t+Δt


time [s]


initial mole of water [mol]


concentration of carbon dioxide in hydrate phase [mol m−3]


concentration of carbon dioxide [mol m−3]


initial concentration of carbon dioxide [mol m−3]


concentration of CO2 at the stationary point [mol m−3]


apparent rate constant

Greek Symbols


time difference [s]


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Englezos and J. D. Lee, Korean J. Chem. Eng., 22, 671 (2005).CrossRefGoogle Scholar
  2. 2.
    D. Kyung, K. Lee, H. Kim and W. Lee, Int. J. GreenH. Gas Con., 20, 285 (2014).CrossRefGoogle Scholar
  3. 3.
    T. M. Guo, B. H. Wu, Y. H. Zhu, S. S. Fan and G. J. Chen, J. Petrol. Sci. Eng., 41, 11 (2004).CrossRefGoogle Scholar
  4. 4.
    P. Englezos, Ind. Eng. Chem. Res., 32, 1251 (1993).CrossRefGoogle Scholar
  5. 5.
    M. K. Chun and H. Lee, Korean J. Chem. Eng., 13, 620 (1996).CrossRefGoogle Scholar
  6. 6.
    G. J. Moridis and E. D. Sloan, Energy Convers. Manage., 48, 1834 (2007).CrossRefGoogle Scholar
  7. 7.
    J. W. Lee, P. Dotel, J. Park and J. H. Yoon, Korean J. Chem. Eng., 12, 2507 (2015).CrossRefGoogle Scholar
  8. 8.
    J. W. Lee, K. K. Chun, K. M. Lee, Y. J. Kim and H. Lee, Korean J. Chem. Eng., 19, 673 (2002).CrossRefGoogle Scholar
  9. 9.
    E. D. Sloan, Ind. Eng. Chem. Res., 39, 3123 (2000).CrossRefGoogle Scholar
  10. 10.
    S. Almenningen, J. Gauteplass, P. Fotland, G. L. Aastveit, T. Barth and G. Ersland, Int. J. GreenH. Gas Con., 79, 272 (2018).CrossRefGoogle Scholar
  11. 11.
    T. Mori and Y. H. Mori, Int. J. Refrig., 12, 259 (1989).CrossRefGoogle Scholar
  12. 12.
    H. Inaba, Int. J. Therm. Sci., 39, 991 (2000).CrossRefGoogle Scholar
  13. 13.
    E. D. Sloan and F. Fleyfel, Fluid Phase Equilib., 76, 123 (1992).CrossRefGoogle Scholar
  14. 14.
    F. Pivezhani, H. Roosta and A. Dashti, Energy, 113, 215 (2016).CrossRefGoogle Scholar
  15. 15.
    A. Kumar, T. Sakpal and P. Linga, Fuel, 105, 664 (2013).CrossRefGoogle Scholar
  16. 16.
    B. ZareNezhad and V Montazeri, Energy Convers. Manage., 79, 289 (2014).CrossRefGoogle Scholar
  17. 17.
    X. Wang and M. Dennis, Chem. Eng. Sci., 155, 294 (2016).CrossRefGoogle Scholar
  18. 18.
    N. N. Nguyen, A. V. Nguyen, K. T. Nguyen, L. Rintoul and L. X. Dang, Fuel, 185, 517 (2016).CrossRefGoogle Scholar
  19. 19.
    P. Babu, W. I. Chin, R. Kumar and P. Linga, Energy Procedia, 61, 1780 (2014).CrossRefGoogle Scholar
  20. 20.
    X. S. Li, C. G. Xu, Z. Y. Chen and H. J. Wu, Energy, 36, 1394 (2011).CrossRefGoogle Scholar
  21. 21.
    X. S. Li, C. G. Xu, Z. Y. Chen and J. Cai, Int. J. Hydrogen Energy, 37, 720 (2012).CrossRefGoogle Scholar
  22. 22.
    P. J. Herslund, K. Thomsen, J. Abildskov, N. Von Solms, A. Galfré, P. Brântuas and J. M. Herri, Int. J. GreenH. Gas Con., 17, 397 (2013).CrossRefGoogle Scholar
  23. 23.
    S. D. Zhou, Y. S. Yu, M. M. Zhao, S. L. Wang and G. Z. Zhang, Energy Fuels, 28, 4694 (2014).CrossRefGoogle Scholar
  24. 24.
    S. Zhou, K. Jiang, Y. Zhao, Y. Chi, S. Wang and G. Zhang, J. Chem. Eng. Data, 63, 389 (2018).CrossRefGoogle Scholar
  25. 25.
    Y. S. Yu, C. G. Xu and X. S. Li, J. Ind. Eng. Chem., 59, 64 (2018).CrossRefGoogle Scholar
  26. 26.
    A. Mohammadi, M. Manteghian, A. Haghtalab, A. H. Mohammadi and M. Rahmati-Abkenar, Chem. Eng. J., 237, 387 (2014).CrossRefGoogle Scholar
  27. 27.
    B. ZareNezhad and V. Montazeri, Petrol. Sci. Technol., 34, 37 (2016).CrossRefGoogle Scholar
  28. 28.
    J. W. Choi, J. T. Chung and Y. T. Kang, Energy, 78, 869 (2014).CrossRefGoogle Scholar
  29. 29.
    M. Mohammadi, A. Haghtalab and Z. Fakhroueian, J. Chem. Thermodyn., 96, 24 (2016).CrossRefGoogle Scholar
  30. 30.
    S. Said, V. Govindaraj, J. M. Herri, Y. Ouabbas, M. Khodja, M. Belloum and R. Nagarajan, J. Nat. Gas Sci. Eng., 32, 95 (2016).CrossRefGoogle Scholar
  31. 31.
    J. S. Renault-Crispo, S. Coulombe and P. Servio, Energy, 128, 414 (2017).CrossRefGoogle Scholar
  32. 32.
    V. Vatanpour, S. S. Madaeni, L. Rajabi, S. Zinadini and A. A. Derakhshan, J. Membr. Sci., 401, 132 (2012).CrossRefGoogle Scholar
  33. 33.
    D. Y. Peng and D. B. Robinson, Ind. Eng. Chem., 15, 59 (1976).Google Scholar
  34. 34.
    K. M. Sabil, A.R.C. Duarte, J. Zevenbergen, M. M. Ahmad, S. Yusup, A. A. Omar and C. J. Peters, Int. J. GreenH. Gas Con., 4, 798 (2010).CrossRefGoogle Scholar
  35. 35.
    N. Karami and M. Rahimi, Int. J. Heat Mass Transf., 55, 45 (2014).CrossRefGoogle Scholar
  36. 36.
    R. L. Kars, R. J. Best and A. A. H. Drinkenburg, Chem. Eng. J., 17, 201 (1979).CrossRefGoogle Scholar
  37. 37.
    J. H. J. Kluytmans, B. G. M. Van Wachem, B. F. M. Kuster and J. C. Schouten, Chem. Eng. Sci., 58, 4719 (2003).CrossRefGoogle Scholar
  38. 38.
    J. H. Kim, C. W. Jung and Y. T. Kang, Int. J. Heat Mass Transf., 76, 484 (2014).CrossRefGoogle Scholar
  39. 39.
    M. Jeong, J. W. Lee, S. J. Lee and Y. T. Kang, Int. J. Heat Mass Transf., 108, 680 (2017).CrossRefGoogle Scholar
  40. 40.
    S. R. Firoozabadi, M. Bonyadi and A. Lashanizadegan, J. Nat. Gas Sci. Eng., 59, 374 (2018).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Vahab Montazeri
    • 1
  • Masoud Rahimi
    • 1
    Email author
  • Bahman Zarenezhad
    • 2
  1. 1.Department of Chemical EngineeringRazi UniversityKermanshahIran
  2. 2.Faculty of Chemical, Petroleum and Gas EngineeringSemnan UniversitySemnanIran

Personalised recommendations