Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1806–1813 | Cite as

Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption

  • Philje Yang
  • Mugeun Song
  • Daekeun Kim
  • Sokhee Philemon Jung
  • Yuhoon HwangEmail author
Rapid Communication
  • 60 Downloads

Abstract

Volatile organic compounds (VOCs) can cause carcinogenic risk, odor problems, and even generation of particulate matter. Adsorption is an effective technique for controlling VOC emissions at the source. In this study, porous clay heterostructure (PCH) was considered as a possible VOC adsorbent, and the synthesis conditions were optimized. The ratio of tetraethyl orthosilicate (TEOS) compared to organoclay and dodecylamine (DDA) was selected as a synthesis condition variable (organoclay: dodecylamine: TEOS=1 : 1 : 30–120). We investigated the change of morphology and porosity of PCH by using a transmission electron microscope, nitrogen adsorption/desorption, and x-ray fluorescence. The porosity of PCH was changed depending on the TEOS ratio. As the ratio of TEOS decreased, the pore size of the PCH also decreased. However, irregular layer expansion was observed due to the swelling of organoclay by DDA in PCH30. To evaluate the possibility of using PCH as an adsorbent for low concentration VOCs, specifically toluene and decane, adsorption experiments were conducted, and it was confirmed that micropores play an essential role for low concentration VOC adsorption. PCH60 was selected as an optimal condition. The toluene and decane adsorption capacity of PCH60 was, respectively, measured as 122.92 mg/g and 886.73 mg/g.

Keywords

PCH Adsorption VOC TEOS Micropore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT (2017M1A2 A2086647).

References

  1. 1.
    Z. Shareefdeen and A. Singh, Biotechnology for odor and air pollution control, Springer Science & Business media, Berlin, Heidelberg (2005).Google Scholar
  2. 2.
    M. Tancrède, R. Wilson, L. Zeise and E. A. C. Crouch, Atmos. Environ., 21, 2187 (1987).Google Scholar
  3. 3.
    R. Iranpour, H. H. J. Cox, M. A. Deshusses and E. D. Schroeder, Environ. Prog. Sustain. Energy, 24, 254 (2005).Google Scholar
  4. 4.
    M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou and J. Wilson, Atmos. Chem. Phys., 5, 1053 (2005).Google Scholar
  5. 5.
    R. G. Derwent, M. E. Jenkin, S. R. Utembe, D. E. Shallcross, T. P. Murrells and N. R. Passant, Sci. Total Environ., 408, 3374 (2010).PubMedGoogle Scholar
  6. 6.
    H. Shin, J. Kim, S. Lee and Y. Kim, Environ. Sci. Pollut. Res., 20, 1468 (2013).Google Scholar
  7. 7.
    G. Leson and A. M. Winer, J. Air Waste Manage. Assoc., 41, 1045 (1991).PubMedGoogle Scholar
  8. 8.
    T. Granström, P. Lindberg, J. Nummela, J. Jokela and M. Leisola, Biodegradation, 13, 155 (2002).PubMedGoogle Scholar
  9. 9.
    M. A. Campesi, C. D. Luzi, G. F. Barreto and O. M. Martínez, J. Environ. Manage., 154, 216 (2015).PubMedGoogle Scholar
  10. 10.
    B.-S. Choi and J. Yi, Chem. Eng. J., 76, 103 (2000).Google Scholar
  11. 11.
    Y. Chiang, P. Chiang and C. Huang, Carbon, 39, 523 (2001).Google Scholar
  12. 12.
    A. K. Ghoshal and S. D. Manjare, J. Loss Prevent. Proc., 15, 413 (2002).Google Scholar
  13. 13.
    O. Ioannidou and A. Zabaniotou, Renew. Sust. Energy Rev., 11, 1966 (2007).Google Scholar
  14. 14.
    G. E. Strudgeon, B. J. Lewis, W. W. Albury and R. C. Clinger, J. Water Pollut. Control Fed., 52, 2516 (1980).Google Scholar
  15. 15.
    L. Zhu, S. Tan and Y. Shi, Clay. Clay Miner., 53, 123 (2005).Google Scholar
  16. 16.
    F. Delage, P. Pre and P. LeCloirec, Environ. Sci. Technol., 34, 4816 (2000).Google Scholar
  17. 17.
    F. A. Banat, B. Al-Bashir, S. Al-Asheh and O. Hayajneh, Environ. Pollut., 107, 391 (2000).PubMedGoogle Scholar
  18. 18.
    S. A. Khan, M. A. Khan and Riaz-ur-Rehman, Waste Manage., 15, 271 (1995).Google Scholar
  19. 19.
    K. Wang and B. Xing, J. Environ. Qual., 34, 342 (2005).PubMedGoogle Scholar
  20. 20.
    F. Qu, L. Zhu and K. Yang, J. Hazard. Mater., 170, 7 (2009).PubMedGoogle Scholar
  21. 21.
    H. He, L. Ma, J. Zhu, R. L. Frost, B. K. G. Theng and F. Bergaya, Appl. Clay Sci., 100, 22 (2014).Google Scholar
  22. 22.
    L. Deng, P. Yuan, D. Liu, F. Annabi-Bergaya, J. Zhou, F. Chen and Z. Liu, Appl. Clay Sci., 143, 184 (2017).Google Scholar
  23. 23.
    L. B. de Paiva, A. R. Morales and F. R. Valenzuela Díaz, Appl. Clay Sci., 42, 8 (2008).Google Scholar
  24. 24.
    J. Pires, A. Carvalho and M. B. de Carvalho, Micropor. Mesopor. Mater., 43, 277 (2001).Google Scholar
  25. 25.
    T. J. Pinnavaia, A. Galarneau and A. Barodawalla, Nature, 374, 529 (1995).Google Scholar
  26. 26.
    M. A. Lillo-Ródenas, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 43, 1758 (2005).Google Scholar
  27. 27.
    S. K. Modak, A. Mandal and D. Chakrabarty, Polym. Composite, 34, 32 (2013).Google Scholar
  28. 28.
    Y. Wang, P. Zhang, K. Wen, X. Su, J. Zhu and H. He, Micropor. Mesopor. Mater., 224, 285 (2016).Google Scholar
  29. 29.
    K. Kwon, W. Jo, H. Lim and W. Jeong, J. Hazard. Mater., 148, 192 (2007).PubMedGoogle Scholar
  30. 30.
    J. A. Park, J. K. Kang, J. H. Kim, S. B. Kim, S. Yu and T. H. Kim, Environ. Eng. Res., 20, 133 (2015).Google Scholar
  31. 31.
    Y. Hu, L. Liu, F. Min, M. Zhang and S. Song, Colloids Surf., A, 434, 281 (2013).Google Scholar
  32. 32.
    K. Kosuge, S. Kubo, N. Kikukawa and M. Takemori, Langmuir, 23, 3095 (2007).PubMedGoogle Scholar
  33. 33.
    K. S. W. Sing, Pure Appl. Chem., 57, 603 (1985).Google Scholar
  34. 34.
    H. Chen and D. A. Schiraldi, Polym. Rev., 59, 1 (2019).Google Scholar
  35. 35.
    Q. Guo, Y. Liu, G. Qi and W. Jiao, Chem. Eng. Res. Des., 143, 47 (2019).Google Scholar
  36. 36.
    A. Amari, M. Chlendi, A. Gannouni and A. Bellagi, Appl. Clay Sci., 47, 457 (2010).Google Scholar
  37. 37.
    J. Benkhedda, J. Jaubert, D. Barth and L. Perrin, J. Chem. Eng. Data, 45, 650 (2000).Google Scholar
  38. 38.
    C. Wang, K. Chang, T. Chung and H. Wu, J. Chem. Eng. Data, 49, 527 (2004).Google Scholar
  39. 39.
    M. A. Lillo-Ródenas, A. J. Fletcher, K. M. Thomas, D. Cazorla-Amorös and A. Linares-Solano, Carbon, 44, 1455 (2006).Google Scholar
  40. 40.
    J. Zhang, S. Lu, J. Li, P. Zhang, H. Xue, X. Zhao and L. Xie, Energies, 10, 1586 (2017).Google Scholar
  41. 41.
    I. Ushiki, M. Ota, Y. Sato and H. Inomata, Fluid Phase Equilib., 375, 293 (2014).Google Scholar
  42. 42.
    B. Azambre, A. Westermann, G. Finqueneisel, F. Can and J. D. Comparot, J. Phys. Chem. C, 119, 315 (2015).Google Scholar
  43. 43.
    I. Ushiki, M. Ota, Y. Sato and H. Inomata, Fluid Phase Equilib., 344, 101 (2013).Google Scholar
  44. 44.
    N. Takahashi, I. Ushiki, Y. Hamabe, M. Ota, Y. Sato and H. Inomata, J. Supercrit. Fluids, 107, 226 (2016).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Philje Yang
    • 1
  • Mugeun Song
    • 1
  • Daekeun Kim
    • 1
  • Sokhee Philemon Jung
    • 2
  • Yuhoon Hwang
    • 1
    Email author
  1. 1.Department of Environmental EngineeringSeoul National University of Science and TechnologySeoulKorea
  2. 2.Department of Environment and Energy EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations