Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1814–1825 | Cite as

Development of magnetically separable Cu catalyst supported by pre-treated steel slag

  • Sunho Yoon
  • Sungjun BaeEmail author
Rapid Communication
  • 66 Downloads

Abstract

Wastewater contaminated with organic compounds is a serious problem; therefore, many catalysts, especially copper catalysts, have been developed to treat it and remove contaminants before discharge. However, such separation and reuse of these catalysts is often challenging. Steel slag (SS), a by-product of steel production, is produced in large quantities and requires careful disposal. Therefore, in this study, we developed a magnetically recyclable copper catalyst utilizing pre-treated magnetic steel slag (MSS) as a support. First, magnetic separation was carried out to remove calcium silicate impurities such as alite and belite in MSS up to five times, thus increasing the Fe content of the MSS. We synthesized the Cu catalyst supported by MSS (donated as Cu@MSS) and characterized the catalyst by various surface analysis techniques, showing the presence of CuO and CuCO3 nanoparticles on the MSS surface. In catalytic reduction tests of para-nitrophenol using sodium borohydride in the presence of Cu@MSS, the reaction was accelerated when using the five-times pre-treated MSS because of the removal of inhibitors such as calcium compounds, as well as the high content of iron oxides leading to a synergetic effect with metallic Cu in this study. In addition, we investigated the effects of various factors, including Cu loading, sodium borohydride concentration, and catalyst dosage, on the catalytic activity of Cu@MSS. The catalyst was found to be stable and reusable. In summary, these results suggest that treated SS can be used as a support material for copper catalysts for the treatment of contaminated wastewater and the easy separation and reuse of the catalyst.

Keywords

Steel Slag Magnetic Separation Cu Catalyst p-Nitrophenol Recycling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge the support of the National Research Foundation of Korea (project nos. NRF-2019R1C1C1003316) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE, 20174010201490).

References

  1. 1.
    S. M. Kassim, Macromol. Symp, 320, 43 (2012).Google Scholar
  2. 2.
    J. Kim, H. S. Kim and S. Bae, Membr. Water Treat., 10, 1 (2019).Google Scholar
  3. 3.
    S. Yoon and S. Bae, J. Hazard. Mater., 365, 751 (2019).PubMedGoogle Scholar
  4. 4.
    H. Alanyali, M. Çöl, M. Yilmaz and Ş. Karagöz, Waste Manag., 26, 1133 (2006).PubMedGoogle Scholar
  5. 5.
    P. E. Tsakiridis, G. D. Papadimitriou, S. Tsivilis and C. Koroneos, J. Hazard. Mater., 152, 805 (2008).PubMedGoogle Scholar
  6. 6.
    S. Hamid, S. Bae and W. Lee, Chem. Eng. J., 348, 877 (2018).Google Scholar
  7. 7.
    L. V. Fisher and A. R. Barron, Resour. Conserv. Recycl., 146, 244 (2019).Google Scholar
  8. 8.
    T. Zhang, Q. Yu, J. Wei, J. Li and P. Zhang, Resour. Conserv. Recycl., 56, 48 (2011).Google Scholar
  9. 9.
    J.-Y. Lee, J.-S. Choi, T.-F. Yuan, Y.-S. Yoon and D. Mitchell, Materials (Basel), 12, 1371 (2019).Google Scholar
  10. 10.
    W. J. J. Huijgen, G. J. Witkamp and R. N. J. Comans, Environ. Sci. Technol., 39, 9676 (2005).PubMedGoogle Scholar
  11. 11.
    X. Wang and Q. S. Cai, Pedosphere, 16, 519 (2006).Google Scholar
  12. 12.
    H. Y. Poh, G. S. Ghataora and N. Ghazireh, J. Mater. Civ. Eng., 18, 229 (2006).Google Scholar
  13. 13.
    E. Repo, J. K. Warchoł, L. J. Westholm and M. Sillanpää, J. Ind. Eng. Chem, 27, 115 (2015).Google Scholar
  14. 14.
    Y J. Zhang, L. C. Liu, Y. Xu, Y. C. Wang and D. L. Xu, J. Hazard. Mater., 209–210, 146 (2012).PubMedGoogle Scholar
  15. 15.
    M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, P. Xu, C. Zhang, J. Wan, L. Hu, W. Xiong and C. Zhou, Chem. Eng. J., 327, 686 (2017).Google Scholar
  16. 16.
    K. Horii, T. Kato, K. Sugahara, N. Tsutsumi and Y. Kitano, Nippon Steel Sumitomo Met. Tech. Rep., 109 (2015).Google Scholar
  17. 17.
    J. Zhao, D. Wang, P. Yan and W. Li, Appl. Sci., 6, 237 (2016).Google Scholar
  18. 18.
    J. Park and S. Bae, Chemosphere, 202, 733 (2018).PubMedGoogle Scholar
  19. 19.
    M. Kim and S. Bae, Chemosphere, 212, 1020 (2018).PubMedGoogle Scholar
  20. 20.
    J. Park and S. Bae, J. Hazard. Mater., 371, 72 (2019).PubMedGoogle Scholar
  21. 21.
    Y. S. Chan, M. K. Chan, S. K. Ngien, S. Y. Chew and Y. K. Teng, Membr. Water Treat., 9, 1 (2018).Google Scholar
  22. 22.
    S. Khosroyar and A. Arastehnodeh, Membr. Water Treat., 9, 481 (2018).Google Scholar
  23. 23.
    X. Du, J. He, J. Zhu, L. Sun and S. An, Appl. Surf. Sci., 258, 2717 (2012).Google Scholar
  24. 24.
    J. Jung, S. Bae and W. Lee, Appl. Catal. B Environ., 127, 148 (2012).Google Scholar
  25. 25.
    J. Park and S. Bae, Presented at the 2nd international conference on Bioresources, Energy, Environment, and Materials Technology (BEEM 2018), Hongcheon, Korea, June 10–13, 2018.Google Scholar
  26. 26.
    T. R. Mandlimath and B. Gopal, J. Mol. Catal. A Chem, 350, 9 (2011).Google Scholar
  27. 27.
    S. Bae, S. Gim, H. Kim and K. Hanna, Appl. Catal. B Environ., 182, 541 (2016).Google Scholar
  28. 28.
    J. Kim and S. Bae, Environ. Eng. Res., 24, 646 (2019).Google Scholar
  29. 29.
    Z. Xi, Z. Jingdong, W. Shengzhe and L. Fei, Open Chem., 16, 583 (2018).Google Scholar
  30. 30.
    X. Lin, X. Lv, L. Wang, F. Zhang and L. Duan, Mater. Res. Bull., 48, 2511 (2013).Google Scholar
  31. 31.
    S. Pu and M. Liu, J. Alloys Compd., 481, 851 (2009).Google Scholar
  32. 32.
    S. Jung, S. Bae and W. Lee, Environ. Sci. Technol., 48, 9651 (2014).PubMedGoogle Scholar
  33. 33.
    L. Feng, R. Wang, Y. Zhang, S. Ji, Y. Chuan, W. Zhang, B. Liu, C. Yuan and C Du, J. Mater. Sci., 54, 1520 (2019).Google Scholar
  34. 34.
    H. Hadj Mokhtar, B. Boukoussa, R. Hamacha, A. Bengueddach and D. El Abed, RSC Adv., 5, 93438 (2015).Google Scholar
  35. 35.
    W. Luo, R. Jin, Y. Qin, F. Huang and C. Wang, Appl. Phys. Res, 2, 156 (2010).Google Scholar
  36. 36.
    M. Chen, H. Zhu, X. Li, J. Yu, H. Cai, X. Quan, K. Wang and J. Zhang, J. Nanomater., 2014, 1 (2014).Google Scholar
  37. 37.
    Z. Baolin, G. Qi, H. Xueliang, W. Shurong, Z. Shoumin, W. Shihua and H. Weiping, J. Mol. Catal. A Chem., 249, 211 (2006).Google Scholar
  38. 38.
    Q. Feng, W. Zhao and S. Wen, J. Alloys Compd., 744, 301 (2018).Google Scholar
  39. 39.
    S. Pandey and S. B. Mishra, Carbohydr. Polym., 113, 525 (2014).PubMedGoogle Scholar
  40. 40.
    A. Bhattacharjee and M. Ahmaruzzaman, RSC Adv., 6, 41348 (2016).Google Scholar
  41. 41.
    S. Gu, Y. Lu, J. Kaiser, M. Albrecht and M. Ballauff, Phys. Chem. Chem. Phys., 17, 28137 (2015).PubMedGoogle Scholar
  42. 42.
    S. Arora, P. Kapoor and M. L. Singla, React. Kinet. Mech. Catal., 99, 157 (2010).Google Scholar
  43. 43.
    S. Wunder, F. Polzer, Y. Lu, Y. Mei and M. Ballauff, J. Phys. Chem. C., 114, 8814 (2010).Google Scholar
  44. 44.
    P. Zhang, Y. Sui, G. Xiao, Y. Wang, C. Wang, B. Liu, G. Zou and B. Zou, J. Mater. Chem. A., 1, 1632 (2013).Google Scholar
  45. 45.
    M. Li, Y. Su, J. Hu, H. Geng, H. Wei, Z. Yang and Y. Zhang, Mater. Res. Bull., 83, 329 (2016).Google Scholar
  46. 46.
    S. Ghosh, R. Das, I.H. Chowdhury, P. Bhanja and M.K. Naskar, RSC Adv., 5, 101519 (2015).Google Scholar
  47. 47.
    S. Bae, S. Gim, H. Kim, V. Dorcet, M. Pasturel, J.M. Grenèche, G. K. Darbha and K. Hanna, J. Phys. Chem. C., 121, 25195 (2017).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations