Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1753–1766 | Cite as

A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications

  • Sung Pil Hong
  • Seonghwan Kim
  • Nayeong Kim
  • Jeyong YoonEmail author
  • Choonsoo KimEmail author
Review Paper

Abstract

Electrochemically self-doped TiO2 nanotube arrays (known as reduced TiO2 nanotube arrays, r-TiO2 NTAs) are currently drawing great attention as emerging and promising materials for energy and environmental applications as they exhibit highly enhanced electrochemical properties, such as good capacitive properties and electro- and photocatalytic activity when compared to pristine TiO2 NTAs. Such enhanced properties are attributed to the introduction of trivalent titanium (Ti(III)) as a self-dopant in the lattice of pristine TiO2 NTAs through simple electrochemical reduction. However, in spite of the great interest in, and potential of this material, there is no comprehensive review on the synthesis and applications of r-TiO2 NTAs. Therefore, in this review, we critically and briefly review r-TiO2 NTAs in terms of the electrochemical self-doping mechanism, their functional features, and various applications including photolysis, dye-sensitized solar cells (DSSCs), biomedical coatings and drug delivery. In addition, to better understanding r-TiO2 NTAs, pristine TiO2 NTAs are briefly introduced. Furthermore, this review proposes future research directions with major challenges to be overcome for the successful development of r-TiO2 NTAs, such as to standardize matrices for performance evaluation, to confirm the organic degradation performance as anode, and to improve mechanical stability.

Keywords

TiO2 Nanotube Arrays (NTAs) Electrochemical Self-doping Capacitive Property Electrocatalytic Activity Photocatalytic Activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This was supported by the research grant of the Kongju National University in 2019, and by the research grant of the Waste to Energy Recycling Human Resource Development Project of Korea Ministry of Environment (ME).

References

  1. 1.
    P. Roy, S. Berger and P. Schmuki, Angew. Chem. Int. Ed., 50, 2904 (2011).Google Scholar
  2. 2.
    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C.A. Grimes, Nano Lett., 6, 215 (2006).PubMedGoogle Scholar
  3. 3.
    Y. Hou, X. Li, Q. Zhao, X. Quan and G. Chen, Environ. Sci. Technol., 44, 5098 (2010).PubMedGoogle Scholar
  4. 4.
    Y. Jun, J. H. Park and M. G. Kang, Chem. Commun., 48, 6456 (2012).Google Scholar
  5. 5.
    G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, Sol. Energy Mater., 90, 2011 (2006).Google Scholar
  6. 6.
    C. A. Grimes, J. Mater. Chem., 17, 1451 (2007).Google Scholar
  7. 7.
    A. El Ruby Mohamed and S. Rohani, Energy Environ. Sci., 4, 1065 (2011).Google Scholar
  8. 8.
    G. Mor and C. Grimes, TiO2 nanotube arrays-synthesis, properties and applications, Springer, New York (2009).Google Scholar
  9. 9.
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).Google Scholar
  10. 10.
    W. Choi, A. Termin and M. R. Hoffmann, Angew. Chem. Int. Ed., 33, 1091 (1994).Google Scholar
  11. 11.
    X. Chen, L. Liu, Y. Y. Peter and S. S. Mao, Science, 331, 746 (2011).PubMedGoogle Scholar
  12. 12.
    J. M. Macak, B. G. Gong, M. Hueppe and P. Schmuki, Adv. Mater., 19, 3027 (2007).Google Scholar
  13. 13.
    J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Curr. Opin. Solid State Mater. Sci., 11, 3 (2007).Google Scholar
  14. 14.
    Y. C. Nah, I. Paramasivam and P. Schmuki, ChemPhysChem, 11, 2698 (2010).PubMedGoogle Scholar
  15. 15.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong and Y. Li, Nano Lett., 12, 1690 (2012).PubMedGoogle Scholar
  16. 16.
    A. Zaleska, Recent Pat. Eng., 2, 157 (2008).Google Scholar
  17. 17.
    J. H. Park, S. Kim and A. J. Bard, Nano Lett., 6, 24 (2006).PubMedGoogle Scholar
  18. 18.
    F. Fabregat-Santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar and C. A. Grimes, J. Am. Chem. Soc., 130, 11312 (2008).PubMedGoogle Scholar
  19. 19.
    Z. Zhang, M. N. Hedhili, H. Zhu and P. Wang, Phys. Chem. Chem. Phys., 15, 15637 (2013).PubMedGoogle Scholar
  20. 20.
    W. Liao, J. Yang, H. Zhou, M. Murugananthan and Y. Zhang, Electrochim. Acta, 136, 310 (2014).Google Scholar
  21. 21.
    C. Xu, Y. Song, L. Lu, C. Cheng, D. Liu, X. Fang, X. Chen, X. Zhu and D. Li, Nanoscale Res. Lett., 8, 391 (2013).PubMedPubMedCentralGoogle Scholar
  22. 22.
    W. Zhong, S. Sang, Y. Liu, Q. Wu, K. Liu and H. Liu, J. Power Sources, 294, 216 (2015).Google Scholar
  23. 23.
    Q. Zheng, H.-J. Lee, J. Lee, W. Choi, N.-B. Park and C. Lee, Chem. Eng. J., 249, 285 (2014).Google Scholar
  24. 24.
    C. C. Raj and R. Prasanth, J. Electrochem. Soc., 165, E345 (2018).Google Scholar
  25. 25.
    C. Kim, S. Kim, J. Choi, J. Lee, J. S. Kang, Y.-E. Sung, J. Lee, W. Choi and J. Yoon, Electrochim. Acta, 141, 113 (2014).Google Scholar
  26. 26.
    C. Kim, S. Kim, J. Lee, J. Kim and J. Yoon, ACS Appl. Mater. Interfaces, 7, 7486 (2015).PubMedGoogle Scholar
  27. 27.
    Y. Yang, J. Liao, Y. Li, X. Cao, N. Li, C. Wang and S. Lin, RSC Adv., 6, 46871 (2016).Google Scholar
  28. 28.
    H. W. Jeong, K. J. Park, D. S. Han and H. Park, Appl. Catal., B, 226, 194 (2018).Google Scholar
  29. 29.
    C. Kim, S. Lee, S. Kim and J. Yoon, Electrochim. Acta, 222, 1578 (2016).Google Scholar
  30. 30.
    A. Zhang, F. Gong, Y. Xiao, X. Guo, F. Li, L. Wang, Y. Zhang and L. Zhang, J. Electrochem. Soc., 164, H91 (2017).Google Scholar
  31. 31.
    C. Kim, S. Kim, S. P. Hong, J. Lee and J. Yoon, Phys. Chem. Chem. Phys., 18, 14370 (2016).PubMedGoogle Scholar
  32. 32.
    Z. Li, Y. Ding, W. Kang, C. Li, D. Lin, X. Wang, Z. Chen, M. Wu and D. Pan, Electrochim. Acta, 161, 40 (2015).Google Scholar
  33. 33.
    N. S. Peighambardoust, S. K. Asl, R. Mohammadpour and S. K. Asl, Electrochim. Acta, 270, 245 (2018).Google Scholar
  34. 34.
    R. Vellacheri, H. Zhao, M. Mühlstädt, J. Ming, A. Al-Haddad, M. Wu, K. D. Jandt and Y. Lei, Adv. Mater. Technol., 1, 1600012 (2016).Google Scholar
  35. 35.
    D. D. Silva, I. Sánchez-Montes, P. Hammer and J. M. Aquino, Electrochim. Acta, 245, 165 (2017).Google Scholar
  36. 36.
    T. Anwar, W. Li, R. U. R. Sagar, F. Nosheen, R. Singh, H. M. Jafri, K. Shehzad and L. Tongxiang, J. Mater. Sci., 52, 4323 (2017).Google Scholar
  37. 37.
    J. Radjenovic and D. L. Sedlak, Environ. Sci. Technol., 49, 11292 (2015).PubMedGoogle Scholar
  38. 38.
    J. Kim, C. Lee and J. Yoon, Ind. Eng. Chem. Res., 57, 11465 (2018).Google Scholar
  39. 39.
    S. Kim, C. Kim, J. Lee, S. Kim, J. Lee, J. Kim and J. Yoon, ACS Sustainable Chem. Eng., 6, 1620 (2018).Google Scholar
  40. 40.
    N. Liu, C. Schneider, D. Freitag, E. M. Zolnhofer, K. Meyer and P. Schmuki, Chem. Eur. J., 22, 13810 (2016).PubMedGoogle Scholar
  41. 41.
    H. Zhu, M. Zhao, J. Zhou, W. Li, H. Wang, Z. Xu, L. Lu, L. Pei, Z. Shi and S. Yan, Appl. Catal., B, 234, 100 (2018).Google Scholar
  42. 42.
    L. Zhu, H. Ma, H. Han, Y. Fu, C. Ma, Z. Yu and X. Dong, RSC Adv., 8, 18992 (2018).Google Scholar
  43. 43.
    H. Zhou and Y. Zhang, J. Phys. Chem. C, 118, 5626 (2014).Google Scholar
  44. 44.
    H. Zhou and Y. Zhang, J. Power Sources, 239, 128 (2013).Google Scholar
  45. 45.
    V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.-Y. Perrin and M. Aucouturier, Surf. Interface Anal., 27, 629 (1999).Google Scholar
  46. 46.
    V. Zwilling, M. Aucouturier and E. Darque-Ceretti, Electrochim. Acta, 45, 921 (1999).Google Scholar
  47. 47.
    G. Mor, O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimes, J. Mater. Res., 18, 2588 (2003).Google Scholar
  48. 48.
    Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes, J. Mater. Res., 20, 230 (2005).Google Scholar
  49. 49.
    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett., 5, 191 (2005).PubMedGoogle Scholar
  50. 50.
    J. M. Macak, K. Sirotna and P. Schmuki, Electrochim. Acta, 50, 3679 (2005).Google Scholar
  51. 51.
    J. M. Macák, H. Tsuchiya and P. Schmuki, Angew. Chem. Int. Ed., 44, 2100 (2005).Google Scholar
  52. 52.
    L. Taveira, J. Macak, H. Tsuchiya, L. Dick and P. Schmuki, J. Electrochem. Soc., 152, B405 (2005).Google Scholar
  53. 53.
    S. P. Albu, A. Ghicov, J. M. Macak and P. Schmuki, Phys. Status Solidi RRL, 1, R65 (2007).Google Scholar
  54. 54.
    K. Yasuda and P. Schmuki, Electrochim. Acta, 52, 4053 (2007).Google Scholar
  55. 55.
    S. Bauer, S. Kleber and P. Schmuki, Electrochem. Commun., 8, 1321 (2006).Google Scholar
  56. 56.
    S. Berger, J. Kunze, P. Schmuki, D. LeClere, A. T. Valota, P. Skeldon and G. E. Thompson, Electrochim. Acta, 54, 5942 (2009).Google Scholar
  57. 57.
    S. Li, G. Zhang, D. Guo, L. Yu and W. Zhang, J. Phys. Chem. C, 113, 12759 (2009).Google Scholar
  58. 58.
    L. Hu, K. Huo, R. Chen, B. Gao, J. Fu and P. K. Chu, Anal. Chem., 83, 8138 (2011).PubMedGoogle Scholar
  59. 59.
    J. E. Houser and K. R. Hebert, Nat. Mater., 8, 415 (2009).PubMedGoogle Scholar
  60. 60.
    Q. A. S. Nguyen, Y. V. Bhargava, V. R. Radmilovic and T. M. Devine, Electrochim. Acta, 54, 4340 (2009).Google Scholar
  61. 61.
    A. Valota, D. LeClere, P. Skeldon, M. Curioni, T. Hashimoto, S. Berger, J. Kunze, P. Schmuki and G. Thompson, Electrochim. Acta, 54, 4321 (2009).Google Scholar
  62. 62.
    J.-L. Delplancke, A. Garnier, Y. Massiani and R. Winand, Electrochim. Acta, 39, 1281 (1994).Google Scholar
  63. 63.
    D. R. Zhang X. Z. Jin and J. H. Li, Master. Chem. Phys., 176, 68 (2016).Google Scholar
  64. 64.
    J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J. Morante, J. Appl. Phys., 92, 853 (2002).Google Scholar
  65. 65.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. D. de Coss and G. Oskam, Nanotechnology, 19, 145605 (2008).PubMedGoogle Scholar
  66. 66.
    G. K. Mor, O. K. Varghese, M. Paulose and C. A. Grimes, Adv. Funct. Mater., 15, 1291 (2005).Google Scholar
  67. 67.
    V. Mahajan, M. Misra, K. Raja and S. Mohapatra, J. Phys. D: Appl. Phys., 41, 125307 (2008).Google Scholar
  68. 68.
    M. Kunat and U. Burghaus, Surf. Sci., 544, 170 (2003).Google Scholar
  69. 69.
    S. Funk and U. Burghaus, Catal. Lett., 118, 118 (2007).Google Scholar
  70. 70.
    S. K. Deb and S. Cells, Sol. Energy Mater., 92, 245 (2008).Google Scholar
  71. 71.
    F. Hu, F. Ding, S. Song and P. K. Shen, J. Power Sources, 163, 415 (2006).Google Scholar
  72. 72.
    K. Nakata and A. Fujishima, J. Photochem. Photobiol., C, 13, 169 (2012).Google Scholar
  73. 73.
    S.-Y. Lee and S.-J. Park, J. Ind. Eng. Chem., 19, 1761 (2013).Google Scholar
  74. 74.
    Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, Nano Lett., 13, 14 (2012).PubMedGoogle Scholar
  75. 75.
    G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Nano Lett., 11, 3026 (2011).Google Scholar
  76. 76.
    V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann and S. C. Pillai, J. Photochem. Photobiol., C, 25, 1 (2015).Google Scholar
  77. 77.
    M. Grätzel, Inorg. Chem., 44, 6841 (2005).PubMedGoogle Scholar
  78. 78.
    K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Nano Lett., 7, 69 (2007).PubMedGoogle Scholar
  79. 79.
    P. Roy, D. Kim, K. Lee, E. Spiecker and P. Schmuki, Nanoscale Res. Lett., 2, 45 (2010).Google Scholar
  80. 80.
    A. Kar, K. Raja and M. Misra, Surf. Coat. Technol., 201, 3723 (2006).Google Scholar
  81. 81.
    N. K. Shrestha, J. M. Macak, F. Schmidt-Stein, R. Hahn, C. T. Mierke, B. Fabry and P. Schmuki, Angew. Chem. Int. Ed., 48, 969 (2009).Google Scholar
  82. 82.
    Y. Y. Song, P. Roy, I. Paramasivam and P. Schmuki, Angew. Chem. Int. Ed., 49, 351 (2010).Google Scholar
  83. 83.
    J. Lee, D. H. Kim, S.-H. Hong and J. Y. J. S. Jho, Sens. Actuators, B: Chem., 160, 1494 (2011).Google Scholar
  84. 84.
    I.-D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, Nano Lett., 6, 2009 (2006).PubMedGoogle Scholar
  85. 85.
    S. Berger, A. Ghicov, Y.-C. Nah and P. Schmuki, Langmuir, 25, 4841 (2009).PubMedGoogle Scholar
  86. 86.
    T. Yamase, Chem. Rev., 98, 307 (1998).PubMedGoogle Scholar
  87. 87.
    H. Zhou and Y. Zhang, J. Phys. Chem. C, 118, 5626 (2014).Google Scholar
  88. 88.
    W.-D. Zhu, C.-W. Wang, J.-B. Chen, Y. Li and J. Wang, Appl. Surf. Sci., 301, 525 (2014).Google Scholar
  89. 89.
    C. Xue, S. Hu, Q. Chang, N. Li, Y. Wang, W. Liu and J. Yang, J. Mater. Sci., 53, 9742 (2018).Google Scholar
  90. 90.
    H. Sierra-Uribe, J. E. Carrera-Crespo, A. Cano, E. M. Córdoba-Tuta I. González and P. Acevedo-Peña, J. Solid State Electrochem., 22, 1881 (2018).Google Scholar
  91. 91.
    K. Du, G. Liu, M. Li, C. Wu, X. Chen and K. Wang, Electrochim. Acta, 210, 367 (2016).Google Scholar
  92. 92.
    M. Xing, W. Fang, M. Nasir, Y. Ma, J. Zhang and M. Anpo, J. Catal., 297, 236 (2013).Google Scholar
  93. 93.
    J. Song, M. Zheng, X. Yuan, Q. Li, F. Wang, L. Ma, Y. You, S. Liu, P. Liu and D. Jiang, J. Mater. Sci., 52, 6976 (2017).Google Scholar
  94. 94.
    L. Zhang, H. Cao, Q. Pen, L. Wu, G. Hou, Y. Tang and G. Zheng, Electrochim. Acta, 283, 1507 (2018).Google Scholar
  95. 95.
    M. Salari, K. Konstantinov and H. K. Liu, J. Mater. Chem., 21, 5128 (2011).Google Scholar
  96. 96.
    H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song and L. Lu, Electrochim. Acta, 116, 129 (2014).Google Scholar
  97. 97.
    G. Zhu, T. Lin, X. Lü, W. Zhao, C. Yang, Z. Wang, H. Yin, Z. Liu, F. Huang and J. Lin, J. Mater. Chem. A, 1, 9650 (2013).Google Scholar
  98. 98.
    J. Liu, M. Dai, J. Wu, Y. Hu, Q. Zhang, J. Cui, Y. Wang, H. H. Tan and Y. Wu, Sci. Bulletin, 63, 194 (2018).Google Scholar
  99. 99.
    M. Salari, S. H. Aboutalebi, K. Konstantinov and H. K. Liu, Phys. Chem. Chem. Phys., 13, 5038 (2011).PubMedGoogle Scholar
  100. 100.
    M. S. Kim, T.-W. Lee and J. H. Park, J. Electrochem. Soc., 156, A584 (2009).Google Scholar
  101. 101.
    Q. Li, Z. Xia, S. Wang, Y. Zhang and Y. Zhang, J. Solid State Electrochem., 21, 2177 (2017).Google Scholar
  102. 102.
    N. A. Samsudin, Z. Zainal, H. N. Lim, Y. Sulaiman, S.-K. Chang, Y.-C. Lim, M. Amin and W. Nadrah, J. Nanomater., 2018, 1 (2018).Google Scholar
  103. 103.
    J. Duan, H. Hou, X. Liu, C. Yan, S. Liu, R. Meng, Z. Hao, Y. Yao and Q. Liao, J. Porous Mater., 23, 837 (2016).Google Scholar
  104. 104.
    C. Zhang, J. Xing, H. Fan, W. Zhang, M. Liao and Y. Song, J. Mater. Sci., 52, 3146 (2017).Google Scholar
  105. 105.
    H. Zhou and Y. Zhang, J. Power Sources, 272, 866 (2014).Google Scholar
  106. 106.
    Y. Qin, J. Zhang, Y. Wang, X. Shu, C. Yu, J. Cui, H. Zheng, Y. Zhang and Y. Wu, RSC Adv., 6, 47669 (2016).Google Scholar
  107. 107.
    J. Duan, H. Hou, X. Liu, S. Liu, Q. Liao and Y. Yao, Ceram. Int., 42, 16611 (2016).Google Scholar
  108. 108.
    J. Duan, H. Hou, X. Liu, Q. Liao, S. Liu and Y. Yao, Ionics, 23, 3037 (2017).Google Scholar
  109. 109.
    D. Pletcher and F. C. Walsh, Industrial electrochemistry, Springer Science & Business Media (2012).Google Scholar
  110. 110.
    J. Lipkowski and P. N. Ross, The electrochemistry of novel materials, VCH Publishers (1994).Google Scholar
  111. 111.
    A. Fujishima, Y. Einaga, T. N. Rao and D. A. Tryk, Diamond electrochemistry, Elsevier (2005).Google Scholar
  112. 112.
    J. Kim, C. Kim, S. Kim and J. Yoon, J. Ind. Eng. Chem., 66, 478 (2018).Google Scholar
  113. 113.
    Y. Yang and M. R. Hoffmann, Environ. Sci. Technol., 50, 11888 (2016).PubMedGoogle Scholar
  114. 114.
    Y. Yang, L. C. Kao, Y. Liu, K. Sun, H. Yu, J. Guo, S. Y. H. Liou and M. R. Hoffmann, ACS Catal., 8, 4278 (2018).PubMedPubMedCentralGoogle Scholar
  115. 115.
    A. Ahmadi and T. Wu, Environ. Sci.: Water Res. Technol., 3, 534 (2017).Google Scholar
  116. 116.
    Y. Shi, Z. Lu, L. Guo, Z. Wang, C. Guo, H. Tan and C. Yan, Int. J. Hydrogen Energy, 43, 9133 (2018).Google Scholar
  117. 117.
    J. Han, H. Choi, G. Lee, Y. Tak and J. Yoon, J. Electrochem. Sci. Technol., 7, 76 (2016).Google Scholar
  118. 118.
    H. Maltanava, S. Poznyak, M. Starykevich and M. Ivanovskaya, Electrochim. Acta, 222, 1013 (2016).Google Scholar
  119. 119.
    W. Liao, M. Murugananthan and Y. Zhang, Phys. Chem. Chem. Phys., 17, 8877 (2015).PubMedGoogle Scholar
  120. 120.
    X. Zhang, B. Zhang, D. Huang, H. Yuan, M. Wang and Y. Shen, Carbon, 80, 591 (2014).Google Scholar
  121. 121.
    L. Yu, M. Li, C. Huang, Y. Zhang, J. He, X. Zhou and H. Zhu, Mater. Lett., 216, 239 (2018).Google Scholar
  122. 122.
    M. S. Koo, K. Cho, J. Yoon and W. Choi, Environ. Sci. Technol., 51, 6590 (2017).PubMedGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical ProcessSeoul National University (SNU)SeoulKorea
  2. 2.Korea Environment InstituteSejong-siKorea
  3. 3.Department of Environmental EngineeringKongju National UniversityCheonan-siKorea

Personalised recommendations