Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 11, pp 1791–1798 | Cite as

Visible-to-UV triplet-triplet annihilation upconversion from a thermally activated delayed fluorescence/pyrene pair in an air-saturated solution

  • Hak-Lae Lee
  • Myung-Soo Lee
  • Hyun Park
  • Won-Sik Han
  • Jae-Hyuk KimEmail author
Rapid Communication
  • 75 Downloads

Abstract

Despite increasing use of triplet-triplet annihilation upconversion (TTA-UC) of low-energy visible light, the generation of ultraviolet (UV) photons by TTA remains challenging because of the difficulty in finding sensitizers and acceptors with suitable energy levels. Here, we report efficient, photostable visible-to-UV TTA-UC in an air-saturated solution using a new pair with suitable energy levels: a thermally activated delayed fluorescence (TADF) molecule and pyrene. 4CzIPN, which has extremely small energy difference ΔEST (0.083 eV), was used as the TADF sensitizer to promote effective triplet energy transfer to the acceptor. When oleic acid was used as an effective singlet oxygen receptor in an air-saturated solution, the 4CzIPN/pyrene pair exhibited bright upconverted emission at 370–430 nm under 445 nm laser excitation, but no noticeable upconverted emission was observed when 4CzIPN was paired with previously reported UV-emitting acceptors [2,5-diphenyloxazole (PPO), p-terphenyl, and p-quaterphenyl]. TTA was confirmed by the quadratic dependence of the upconverted emission intensity on the 445 nm laser power density. The maximum quantum yield of the upconverted emission from the 4CzIPN/pyrene pair was 0.66%, which is considerable when compared with that of a previously reported visible-to-UV TTA-UC system with a biacetyl/PPO pair (0.58%).

Keywords

Upconversion Triplet-Triplet Annihilation Anti-Stokes Emission UV Generation Thermally Activated Delayed Fluorescence 

Nomenclature

A

absorbance

ΔEST

energy difference between S1 and T1 states

I

integrated fluorescence intensity

η

refractive index of solvent

ϕ

quantum yield

ϕUC

TTA-UC efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work; was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07049650) and by the Korean government (MSIT) through GCRC-SOP (No. 2011-0030013).

References

  1. 1.
    S. Sarina, E. R. Waclawik and H. Zhu, Green Chem., 15(7), 1814 (2013).CrossRefGoogle Scholar
  2. 2.
    S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 115(46), 13211 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Chen, S. Loeb and J.-H. Kim, Environ. Sci.: Water Res. Technol., 3(2), 188 (2017).Google Scholar
  4. 4.
    T. F. Schulze and T. W. Schmidt, Energy Environ. Sci., 8(1), 103 (2015).CrossRefGoogle Scholar
  5. 5.
    T. Trupke, M. A. Green and P. Würfel, J. Appl. Phys., 92(7), 4117 (2002).CrossRefGoogle Scholar
  6. 6.
    Y. Y. Cheng, B. Fückel, R. W. MacQueen, T. Khoury, R. G. C. R. Clady, T. F. Schulze, N. J. Ekins-Daukes, M. J. Crossley, B. Stannowski, K. Lips and T. W. Schmidt, Energy Environ. Sci., 5(5), 6953 (2012).CrossRefGoogle Scholar
  7. 7.
    G. Chen, J. Seo, C. Yang and P. N. Prasad, Chem. Soc. Rev., 42(21), 8304 (2013).CrossRefGoogle Scholar
  8. 8.
    V. Gray, D. Dzebo, M. Abrahamsson, B. Albinsson and K. Moth-Poulsen, Phys. Chem. Chem. Phys., 16(22), 10345 (2014).CrossRefGoogle Scholar
  9. 9.
    J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp, Energy Environ. Sci., 4(12), 4835 (2011).CrossRefGoogle Scholar
  10. 10.
    J.-H. Kim, F. Deng, F. N. Castellano and J.-H. Kim, Chem. Mater., 24(12), 2250 (2012).CrossRefGoogle Scholar
  11. 11.
    Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley and T. W. Schmidt, J. Phys. Chem. Lett., 1(12), 1795 (2010).CrossRefGoogle Scholar
  12. 12.
    A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione and F. Meinardi, Phys. Chem. Chem. Phys., 14(13), 4322 (2012).CrossRefGoogle Scholar
  13. 13.
    R. S. Khnayzer, J. Blumhoff, J. A. Harrington, A. Haefele, F. Deng and F. N. Castellano, Chem. Commun., 48(2), 209 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Zhao, S. Ji and H. Guo, RSC Adv., 1(6), 937 (2011).CrossRefGoogle Scholar
  15. 15.
    F. N. Castellano and C. E. McCusker, Dalton Trans., 44, 17906 (2015).CrossRefGoogle Scholar
  16. 16.
    W. Wu, J. Zhao, J. Sun and S. Guo, J. Org. Chem., 77, 5305 (2012).CrossRefGoogle Scholar
  17. 17.
    W. Wu, X. Cui and J. Zhao, Chem. Commun., 49(79), 9009 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Zhou, Q. Liu, W. Feng, Y. Sun and F. Li, Chem. Rev., 115(1), 395 (2015).CrossRefGoogle Scholar
  19. 19.
    S. Ji, W. Wu, W. Wu, H. Guo and J. Zhao, Angew. Chem. Int. Ed., 50, 1626 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Guo, L. Xu, K. Xu, J. Zhao, B. Küçükoz, A. Karatay, H. G. Yaglioglu, M. Hayvali and A. Elmali, Chem. Sci., 6, 3724 (2015).CrossRefGoogle Scholar
  21. 21.
    T. N. Singh-Rachford and F. N. Castellano, J. Phys. Chem. A, 113(20), 5912 (2009).CrossRefGoogle Scholar
  22. 22.
    W. Zhao and F. N. Castellano, J. Phys. Chem. A, 110(40), 11440 (2006).CrossRefGoogle Scholar
  23. 23.
    T. C. Wu, D. N. Congreve and M. A. Baldo, Appl. Phys. Lett., 107(3), 031103 (2015).CrossRefGoogle Scholar
  24. 24.
    H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234 (2012).CrossRefGoogle Scholar
  25. 25.
    N. Yanai, M. Kozue, S. Amemori, R. Kabe, C. Adachi and N. Kimizuka, J. Mater. Chem. C, 4(27), 6447 (2016).CrossRefGoogle Scholar
  26. 26.
    B. S. Kim and J. Y. Lee, ACS Appl. Mater. Interfaces, 6(11), 8396 (2014).CrossRefGoogle Scholar
  27. 27.
    Q. Liu, M. Xu, T. Yang, B. Tian, X. Zhang and F. Li, ACS Appl. Mater. Interfaces, 10(12), 9883 (2018).CrossRefGoogle Scholar
  28. 28.
    V. Gray, P. Xia, Z. Huang, E. Moses, A. Fast, D. A. Fishman, V. I. Vullev, M. Abrahamsson, K. Moth-Poulsen and M. L. Tang, Chem. Sci., 8(8), 5488 (2017).CrossRefGoogle Scholar
  29. 29.
    A. Kretzschmar, C. Patze, S. T. Schwaebel and U. H. F. Bunz, J. Org. Chem., 80(18), 9126 (2015).CrossRefGoogle Scholar
  30. 30.
    T. N. Singh-Rachford and F. N. Castellano, Coord. Chem. Rev., 254(21), 2560 (2010).CrossRefGoogle Scholar
  31. 31.
    L. C. Ong, L. Y. Ang, S. Alonso and Y. Zhang Biomaterials, 35(9), 2987 (2014).CrossRefGoogle Scholar
  32. 32.
    N. Yanai and N. Kimizuka, Chem. Commun., 52(31), 5354 (2016).CrossRefGoogle Scholar
  33. 33.
    J.-H. Kim and J.-H. Kim, J. Am. Chem. Soc., 134(42), 17478 (2012).CrossRefGoogle Scholar
  34. 34.
    Q. Liu, B. Yin, T. Yang, Y. Yang, Z. Shen, P. Yao and F. Li, J. Am. Chem. Soc., 135(13), 5029 (2013).CrossRefGoogle Scholar
  35. 35.
    S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen and P. J. Schuck, Proc. Natl. Acad. Sci. USA, 106(27), 10917 (2009).CrossRefGoogle Scholar
  36. 36.
    J. Peng, X. Guo, X. Jiang, D. Zhao and Y. Ma, Chem. Sci., 7(2), 1233 (2016).CrossRefGoogle Scholar
  37. 37.
    C. Li, C. Koenigsmann, F. Deng, A. Hagstrom, C. A. Schmuttenmaer and J.-H. Kim, ACS Photonics, 3(5), 784 (2016).CrossRefGoogle Scholar
  38. 38.
    A. L. Hagstrom, H.-L. Lee, M.-S. Lee, H.-S. Choe, J. Jung, B.-G. Park, W.-S. Han, J.-S. Ko, J.-H. Kim and J.-H. Kim, ACS Appl. Mater. Interfaces, 10(10), 8985 (2018).CrossRefGoogle Scholar
  39. 39.
    K. Okumura, K. Mase, N. Yanai and N. Kimizuka, Chem. - Eur. J., 22(23), 7721 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Hak-Lae Lee
    • 1
  • Myung-Soo Lee
    • 1
  • Hyun Park
    • 2
  • Won-Sik Han
    • 3
  • Jae-Hyuk Kim
    • 1
    Email author
  1. 1.Department of Chemical and Environmental EngineeringPusan National UniversityBusanKorea
  2. 2.Naval Architecture & Ocean EngineeringPusan National UniversityBusanKorea
  3. 3.Department of ChemistrySeoul Women’s UniversitySeoulKorea

Personalised recommendations