Korean Journal of Chemical Engineering

, Volume 36, Issue 7, pp 1157–1163 | Cite as

Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications

  • Jae-Yup KimEmail author
  • Keun-Young Shin
  • Muhammad Hamid Raza
  • Nicola Pinna
  • Yung-Eun SungEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


Vertically aligned TiO2/ZnO nanotube (NT) arrays were developed for application to photoanodes in mesoscopic solar cells. By a two-step anodic oxidation, vertically aligned TiO2 NT arrays with highly ordered surface structure were prepared, followed by deposition of a ZnO shell with a precisely controlled thickness using atomic layer deposition (ALD). When applied to a photoanode of dye-sensitized solar cells (DSSCs), the photovoltage is gradually enhanced as the ZnO shell thickness of the TiO2/ZnO NT electrodes is increased. Furtheremore, the electron lifetime in photoanodes is significantly enhanced due to the ZnO shell, which is examined by open-circuit voltage decay (OCVD) measurement. Photocurrent density-voltage (J-V) curves under the dark condition and OCVD spectra reveal that a negative shift in TiO2 conduction band potential and an energy barrier effect owing to the ZnO shell concurrently contribute to the enhancement of VOC and electron lifetime.


TiO2/ZnO Nanotube Anodic Oxidation Dye-sensitized Solar Cells Atomic Layer Deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B03035077). We thank Kyeong-Hwan Lee for ALD deposition. Muhammad Hamid Raza thanks the University of the Punjab, Lahore, Pakistan for the PhD allowance.

Supplementary material

11814_2019_280_MOESM1_ESM.pdf (146 kb)
Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications


  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater, 15, 353 (2003).CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, Nano Lett, 13, 14 (2013).CrossRefPubMedGoogle Scholar
  3. 3.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, Nano Lett., 6, 215 (2006).CrossRefPubMedGoogle Scholar
  4. 4.
    K. Zhu, N.R. Neale, A. Miedaner and A.J. Frank, Nano Lett., 7, 69 (2007).CrossRefPubMedGoogle Scholar
  5. 5.
    K. Zhu, T.B. Vinzant, N.R. Neale and A.J. Frank, Nano Lett., 7, 3739 (2007).CrossRefPubMedGoogle Scholar
  6. 6.
    J.-Y. Kim, K.J. Lee, S.H. Kang J. Shin and Y.-E. Sung, J. Phys. Chem. C, 115, 19979 (2011).CrossRefGoogle Scholar
  7. 7.
    J.-Y. Kim, K.-H. Lee, J. Shin, S.H. Park, J.S. Kang, K.S. Han, M. M. Sung, N. Pinna and Y.-E. Sung, Nanotechnology, 25, 504003 (2014).CrossRefPubMedGoogle Scholar
  8. 8.
    J.-Y. Kim, J. Shin, D. Kim, Y.-E. Sung and M.J. Ko, Isr. J. Chem., 55, 1034 (2015).CrossRefGoogle Scholar
  9. 9.
    J.-Y. Kim, J.S. Kang, J. Shin, J. Kim, S.-J. Han, J. Park, Y.-S. Min, M.J. Ko and Y.-E. Sung, Nanoscale, 7, 83687 (2015).Google Scholar
  10. 10.
    H.M. Yadav, J.-S. Kim and S.H. Pawar, Korean J. Chem. Eng., 33, 1989 (2016).CrossRefGoogle Scholar
  11. 11.
    Q. Chen and D. Xu, J. Phys. Chem. C, 113, 6310 (2009).CrossRefGoogle Scholar
  12. 12.
    E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz and J.R. Durrant, J. Am. Chem. Soc., 125, 475 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    J.-Y. Kim, S. H. Kang, H. S. Kim and Y.-E. Sung, Langmuir, 26, 2864 (2010).CrossRefPubMedGoogle Scholar
  14. 14.
    S.H. Kang, J.-Y. Kim, Y Kim, H.-S. Kim and Y.-E. Sung, J. Phys. Chem. C, 111, 9614 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. Diamant, S. Chappel, S.G. Chen, O. Melamed and A. Zaban, Coord. Chem. Rev., 248, 1271 (2004).CrossRefGoogle Scholar
  16. 16.
    Y. Diamant, S. G. Chen, O. Melamed and A. Zaban, J. Phys. Chem. B, 107, 1977 (2003).CrossRefGoogle Scholar
  17. 17.
    N. Pinna and M. Knez, Atomic layer depositon of nanostructured materials, 2011, Wiley-VCH, ISBN:978-3-527-32797-3. 1st edition November 2011.Google Scholar
  18. 18.
    S.M. George, Chem. Rev., 110, 111 (2010).CrossRefPubMedGoogle Scholar
  19. 19.
    C. Marichy, M. Bechelany and N. Pinna, Adv. Mater., 24, 1017 (2012).CrossRefPubMedGoogle Scholar
  20. 20.
    S. Selvaraj, H. Moon, J.-Y. Yun and D.-H. Kim, Korean J. Chem. Eng., 33, 3516 (2016).CrossRefGoogle Scholar
  21. 21.
    S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy and M. Grätzel, Prog. Photovolt. Res. Appl, 15, 603 (2007).CrossRefGoogle Scholar
  22. 22.
    S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin and M. Grätzel, Prog. Photovolt. Res. Appl, 14, 589 (2006).CrossRefGoogle Scholar
  23. 23.
    J.-Y. Kim, J. Yang, J.H. Yu, W Baek, C.-H. Lee, H.J. Son, T. Hyeon and M.J. Ko, ACS Nano, 9, 11286 (2015).CrossRefPubMedGoogle Scholar
  24. 24.
    Pattern No. 21–1272, JCPDS (1996).Google Scholar
  25. 25.
    J.-M. Wu, M. Antonietti, S. Gross, M. Bauer and B.M. Smarsly, ChemPhysChem, 9, 748 (2008).CrossRefPubMedGoogle Scholar
  26. 26.
    P. Chen, X. Yin, M. Que, Y. Yang and W. Que, RSC Adv., 6, 57996 (2016).CrossRefGoogle Scholar
  27. 27.
    E. McCafferty and J.P. Wightman, Surf. Interface Anal., 26, 549 (1998).CrossRefGoogle Scholar
  28. 28.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev, 110, 6595 (2010).CrossRefPubMedGoogle Scholar
  29. 29.
    Y. Ku, Y.-H. Huang and Y.-C. Chou, J. Mol. Catal. A: Chem., 342, 18 (2011).CrossRefGoogle Scholar
  30. 30.
    Y. He, Y. Wang, L. Zhang, B. Teng and M. Fan, Appl. Catal. B, 168, 1 (2015).Google Scholar
  31. 31.
    K. Wu, Y. Yu, K. Shen, C. Xia and D. Wang, Solar Energy, 94, 195 (2013).CrossRefGoogle Scholar
  32. 32.
    N.-G. Park, M.G. Kang, K.M. Kim, K.S. Ryu and S.H. Chang, Langmuir, 20, 4246 (2004).CrossRefPubMedGoogle Scholar
  33. 33.
    V. Manthina, J.P.C. Baena, G. Liu and A.G. Agrios, J. Phys. Chem. C, 116, 23864 (2012).CrossRefGoogle Scholar
  34. 34.
    A.N. Filippin, M. Macias-Montero, Z. Saghi, J. Idígoras, P. Burdet, J.R. Sanchez-Valencia, A. Barranco, P.A. Migdley, J.A. Anta and A. Borras, Sci. Rep., 7, 9621 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    M. Quintana, T. Edvinsson, A. Hagfeldt and G. Boschloo, J. Phys. Chem. C, 111, 1035 (2007).CrossRefGoogle Scholar
  36. 36.
    M.-W. Lee, J.-Y. Kim, H.J. Son, J.Y. Kim, B. Kim, H. Kim, D.-K. Lee, K. Kim, D.-H. Lee and M. J. Ko, Sci. Rep., 5, 7711 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    J.-Y. Kim, J.Y. Kim, D.-K. Lee, B. Kim, H. Kim and M.J. Ko, J. Phys. Chem. C, 116, 22759 (2012).CrossRefGoogle Scholar
  38. 38.
    A. Zaban, M. Greenshtein and J. Bisquert, ChemPhysChem, 4, 859 (2003).CrossRefPubMedGoogle Scholar
  39. 39.
    L. Han, N. Koide, Y. Chiba and T. Mitate, Appl. Phys. Lett., 84, 2433 (2004).CrossRefGoogle Scholar
  40. 40.
    G. Schlichthörl, S.Y. Huang, J. Sprague and A.J. Frank, J. Phys. Chem. B, 101, 8141 (1997).CrossRefGoogle Scholar
  41. 41.
    A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wjayantha, J. Phys. Chem. B, 104, 949 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringDankook UniversityYonginKorea
  2. 2.Department of Materials Science and EngineeringHallym UniversityChuncheonKorea
  3. 3.Institut für Chemie and IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Center for Nanoparticle Research, Institute for Basic Science (IBS) and School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations