Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 635–641 | Cite as

Bath sonication for the scalable separation of semiconducting single walled carbon nanotubes

  • Geonhee Park
  • Woo-Jae KimEmail author
  • Jaehyun HurEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 27 Downloads

Abstract

Commercially available single-walled carbon nanotubes (SWNTs) consist of a mixture of metallic (m-SWNTs) and semiconducting SWNTs (sc-SWNTs), and therefore cannot be used as they are for applications where pure semiconductors or metallic materials are needed. Hence, the separation of sc-SWNTs from pristine SWNT mixtures is an essential process that precedes the evaluation of SWNTs. The polymer wrapping method, which is one of the well-known methods for separating sc-SWNTs, can separate sc-SWNTs by forming a sc-SWNT/polymer complex in which sc-SWNTs are selectively wrapped with a conductive polymer over metallic SWNTs. This process is generally realized using a tip sonicator, which enables the polymer wrapping and dispersion for SWNTs. However, this conventional tip sonication has several drawbacks, such as difficulties with respect to mass production, contamination, and high cost of equipment. In this work, the selective dispersion and separation of sc-SWNTs were achieved using bath sonication, which can overcome the drawbacks related to conventional tip sonication process. It was confirmed that bath sonication can achieve a similar level of sc-SWNT dispersion efficiency to that of tip sonication. The variation in the dispersion efficiencies with respect to the dispersion time, SWNT concentration, SWNT types, polymer concentration, and solvent types and concentrations was investigated. Furthermore, the dispersion stability was compared by measuring the particle sizes of the sc-SWNT/conductive polymer composites obtained using the bath sonication and tip sonication methods via electrophoretic light scattering as a function of time.

Keywords

Bath Sonication Semiconducting SWNT Separation Selective Dispersion Poly(3-dodecylthiophene-2,5-diyl) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Valentino, M. Sarno, N. G. Rainone, M. R. Nobile, P. Ciambelli, H. C. Neitzert and G. P. Simon, Phys. E, 40, 2440 (2008).CrossRefGoogle Scholar
  2. 2.
    J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A. Windle, Polymer, 40, 5967 (1999).CrossRefGoogle Scholar
  3. 3.
    M. Biercuk, M. C. Llaguno, M. Radosavljevic, J. Hyun, A. T. Johnson and J. E. Fischer, Appl. Phys. Lett., 80, 2767 (2002).CrossRefGoogle Scholar
  4. 4.
    H. Geng, R. Rosen, B. Zheng, H. Shimoda, L. Fleming, J. Liu and O. Zhou, Adv. Mater., 14, 1387 (2002).CrossRefGoogle Scholar
  5. 5.
    T. Belin and F. Epron, Mater. Sci. Eng. B, 119, 105 (2005).CrossRefGoogle Scholar
  6. 6.
    M. Ouyang, J.-L. Huang, C. L. Cheung and C. M. Lieber, Science, 292, 702 (2001).CrossRefGoogle Scholar
  7. 7.
    J.-S. Lauret, C. Voisin, G. Cassabois, P. Roussignol, C. Delalande, A. Filoramo, L. Capes, E. Valentin and O. Jost, Phys. E, 21, 1057 (2004).CrossRefGoogle Scholar
  8. 8.
    W.-J. Kim, N. Nair, C. Y. Lee and M. S. Strano, J. Phys. Chem. C, 112, 7326 (2008).CrossRefGoogle Scholar
  9. 9.
    J.-E. Um, S. G. Song, P. J. Yoo, C. Song and W.-J. Kim, Appl. Surf. Sci., 429, 278 (2018).CrossRefGoogle Scholar
  10. 10.
    M. S. Arnold, S. I. Stupp and M. C. Hersam, Nano Lett., 5, 713 (2005).CrossRefGoogle Scholar
  11. 11.
    M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp and M. C. Hersam, Nat. Nanotechnol., 1, 60 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, S. M. Bachilo and R. B. Weisman, Nat. Nanotechnol., 5, 443 (2010).CrossRefGoogle Scholar
  13. 13.
    H. Liu, D. Nishide, T. Tanaka and H. Kataura, Nat. Commun., 2, 309 (2011).CrossRefGoogle Scholar
  14. 14.
    G. S. Tulevski, A. D. Franklin and A. Afzali, ACS Nano, 7, 2971 (2013).CrossRefGoogle Scholar
  15. 15.
    V. L. Davis, S. Quaranta, C. Cavallo, A. Latini and F. Gaspari, Sol. Energy Mater. Sol. Cells, 167, 162 (2017).CrossRefGoogle Scholar
  16. 16.
    K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D: Appl. Phys., 31, L34 (1998).CrossRefGoogle Scholar
  17. 17.
    R. Krupke, F. Hennrich, H. v. Löhneysen and M. M. Kappes, Science, 301, 344 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Li, Q. Zhang, N. Peng and Q. Zhu, Appl. Phys. Lett., 86, 153116 (2005).CrossRefGoogle Scholar
  19. 19.
    M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson and N. G. Tassi, Nat. Mater., 2, 338 (2003).CrossRefGoogle Scholar
  20. 20.
    X. Tu and M. Zheng, Nano Res., 1, 185 (2008).CrossRefGoogle Scholar
  21. 21.
    X. Tu, S. Manohar, A. Jagota and M. Zheng, Nature, 460, 250 (2009).CrossRefGoogle Scholar
  22. 22.
    D. T. Lee, J. W. Chung, G. Park, Y. T. Kim, C. Y. Lee, Y. Cho, P. J. Yoo, J. H. Han, H. J. Shin and W. J. Kim, Appl. Surf. Sci., 429, 264 (2018).CrossRefGoogle Scholar
  23. 23.
    H. Wang, G. I. Koleilat, P. Liu, G. Jiménez-Osés, Y.-C. Lai, M. Vosgueritchian, Y. Fang, S. Park, K. N. Houk and Z. Bao, ACS Nano, 8, 2609 (2014).CrossRefGoogle Scholar
  24. 24.
    Y. Yang, L. Ding, J. Han, Z. Zhang and L.-M. Peng, ACS Nano, 11, 4124 (2017).CrossRefGoogle Scholar
  25. 25.
    H. Wang and Z. Bao, Nano Today, 10, 737 (2015).CrossRefGoogle Scholar
  26. 26.
    H. W. Lee, Y. Yoon, S. Park, J. H. Oh, S. Hong, L. S. Liyanage, H. Wang, S. Morishita, N. Patil and Y. J. Park, Nat. Commun., 2, 541 (2011).CrossRefGoogle Scholar
  27. 27.
    C. Caddeo, C. Melis, L. Colombo and A. Mattoni, J. Phys. Chem. C, 114, 21109 (2010).CrossRefGoogle Scholar
  28. 28.
    H. Wang, B. Hsieh, G. Jiménez-Osés, P. Liu, C. J. Tassone, Y. Diao, T. Lei, K. N. Houk and Z. Bao, Small, 11, 126 (2015).CrossRefGoogle Scholar
  29. 29.
    S. M. Tabakman, K. Welsher, G. Hong and H. Dai, J. Phys. Chem. C, 114, 19569 (2010).CrossRefGoogle Scholar
  30. 30.
    J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley and J. M. Tour, Chem. Commun., 193 (2001).Google Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringGachon UniversitySeongnam, Gyeonggi-doKorea
  2. 2.Department of Chemical Engineering and Materials ScienceEwha Womans UniversitySeoulKorea

Personalised recommendations