Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 625–634 | Cite as

Improved photoluminescence and monodisperse performance of colloidal CdTe quantum dots with Cannula method

  • Erdem ElibolEmail author
  • Pınar Sevim Elibol
  • Musa Çadırcı
  • Nedim Tutkun
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 11 Downloads

Abstract

Colloidal quantum dots are nano semiconductor materials that have been found in many applications, producing multiple exciton generation, unique optical and electronic properties, adjustable in size and bandwidth. Synthesized QDs are expected to exhibit high photoluminescence quantum yield and monodisperse properties according to their application area. Cannula method was adapted together with the organometallic synthesis method for the first time in the literature to increase the photoluminescence quantum yield of organometallic CdTe QD and minimize the full width at half maximum value of the photoluminescence band. Injection of precursors by the Cannula method is much faster than the injecting with the conventional method of using a glass syringe, which limits the size distribution in the solution during synthesis. In addition, the fastest injection method using Cannula method yields the shortest full width half maximum value of 27.20 nm for CdTe QDs in the literature. The photoluminescence quantum yield value of the CdTe QDs synthesized by the classical method was 8.12±2.1%, while the photoluminescence quantum yield of the CdTe QDs synthesized by the Cannula method was increased to 25.66±2.1%.

Keywords

Quantum Dots CdTe PLQY FWHM Cannula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Fang, L. Liu, L. Xu, X. Yin and X. Zhong, Nanotechnology, 19 (2008)Google Scholar
  2. 2.
    D. Zhou, M. Lin, Z. Chen, H. Sun, H. Zhang, H. Sun and B. Yang, Chem. Mater., 23, 4857 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Shavel, N. Gaponik and A. Eychmüller, J. Phys. Chem. B., 110, 19280 (2006).CrossRefGoogle Scholar
  4. 4.
    S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey and C. de Mello Donegá, Nano Lett., 3, 503 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Yang, C. Zhang, X. Qu, W. Zhang, M. Marus, B. Xu, K. Wang and X. Wei Sun, IEEE Trans. Nanotechnol., 18, 220 (2019).CrossRefGoogle Scholar
  6. 6.
    Q. Ma and X. Su, Appl. Spectrosc. Rev., 51, 162 (2016).CrossRefGoogle Scholar
  7. 7.
    D. Sharma, R. Jha and S. Kumar, Sol. Energy Mater. Sol. Cells, 155, 294 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Kim and J. Y. Chang, Sens. Actuators, B Chem., 234, 122 (2016).CrossRefGoogle Scholar
  9. 9.
    O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar and Y. Omidi, BioImpacts, 4, 149 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. A. Peng and X. Peng, J. Am. Chem. Soc., 123, 183 (2001).CrossRefGoogle Scholar
  11. 11.
    J. Wang, Y. Long, Y. Zhang, X. Zhong and L. Zhu, ChemPhysChem., 10, 680 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Wang and S. Liu, J. Chil. Chem. Soc., 57, 1109 (2012).CrossRefGoogle Scholar
  13. 13.
    J.-J. Shi, S. Wang, T.-T. He, E. S. Abdel-Halim and J.-J. Zhu, Ultrason. Sonochem., 21, 493 (2014).CrossRefGoogle Scholar
  14. 14.
    L. Li, H. Qian and J. Ren, Chem. Commun., 528 (2005).Google Scholar
  15. 15.
    Y. S. Li, F. L. Jiang, Q. Xiao, R. Li, K. Li, M. F. Zhang, A. Q. Zhang, S. F. Sun and Y. Liu, Appl. Catal. B Environ., 101, 118 (2010).CrossRefGoogle Scholar
  16. 16.
    R. Kniprath, J. P. Rabe, J. T. McLeskey, D. Wang and S. Kirstein, Thin Solid Films, 518, 295 (2009).CrossRefGoogle Scholar
  17. 17.
    G.-Y. Lan, Z. Yang, Y.-W. Lin, Z.-H. Lin, H.-Y. Liao and H.-T. Chang, J. Mater. Chem., 19, 2349 (2009).CrossRefGoogle Scholar
  18. 18.
    R. W. Birkmire and B. E. McCandless, Curr. Opin. Solid State Mater. Sci., 14, 139 (2010).CrossRefGoogle Scholar
  19. 19.
    C. S. Ferekides, U. Balasubramanian, R. Mamazza, V. Viswanathan, H. Zhao and D. L. Morel, Sol. Energy, 77, 823 (2004).CrossRefGoogle Scholar
  20. 20.
    F. L. Xue, J. Y. Chen, J. Guo, C. C. Wang, W. L. Yang, P. N. Wang and D. R. Lu, J. Fluoresc., 17, 149 (2007).CrossRefGoogle Scholar
  21. 21.
    Y. F. Liu and J. S. Yu, J. Colloid Interface Sci., 351, 1 (2010).CrossRefGoogle Scholar
  22. 22.
    B. Jai Kumar and H. M. Mahesh, Superlattices Microstruct., 104, 118 (2017).CrossRefGoogle Scholar
  23. 23.
    J. Lee, H. Chen, K. Koh, C. L. Chang, C. M. Kim and S. H. Kim, Korean J. Chem. Eng., 26, 417 (2009).CrossRefGoogle Scholar
  24. 24.
    K. Ruan, Y. Guo, Y. Tang, Y. Zhang, J. Zhang, M. He, J. Kong and J. Gu, Compos. Commun., 10, 68 (2018).CrossRefGoogle Scholar
  25. 25.
    Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song, L. Wang, J. Kong and J. Gu, Compos. Sci. Technol., 169, 70 (2019).CrossRefGoogle Scholar
  26. 26.
    X. Yang, F. Ren, Y. Wang, T. Ding, H. Sun, D. Ma and X. W. Sun, Sci. Rep., 7 (2017).Google Scholar
  27. 27.
    R. C. Somers, M. G. Bawendi and D. G. Nocera, Chem. Soc. Rev., 36, 579 (2007).CrossRefGoogle Scholar
  28. 28.
    I. Hwang, M. Seol, H. Kim and K. Yong, Appl. Phys. Lett., 103 (2013).Google Scholar
  29. 29.
    R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien and D. J. Binks, Small, 11, 1548 (2015).CrossRefGoogle Scholar
  30. 30.
    C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev. Mater. Sci., 30, 545 (2000).CrossRefGoogle Scholar
  31. 31.
    D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, J. Phys. Chem. B., 105, 2260 (2001).CrossRefGoogle Scholar
  32. 32.
    N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller and H. Weller, J. Phys. Chem. B., 106, 7177 (2002).CrossRefGoogle Scholar
  33. 33.
    L. Li, H. Qian, N. Fang and J. Ren, J. Lumin., 116, 59 (2006).CrossRefGoogle Scholar
  34. 34.
    C. Ge, M. Xu, J. Liu, J. Lei and H. Ju, Chem. Commun., 450 (2008).Google Scholar
  35. 35.
    J. Tian, R. Liu, Y. Zhao, Q. Xu and S. Zhao, J. Colloid Interface Sci., 336, 504 (2009).CrossRefGoogle Scholar
  36. 36.
    E. Elibol, M. Cadırcı and N. Tutkun, Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method, in: Int. Conf. Quantum Dots (ICQD 2017), France/Paris (2017).Google Scholar
  37. 37.
    L. C. Frenette and T. D. Krauss, Nat. Commun., 8 (2017).Google Scholar
  38. 38.
    M. Planells, L. X. Reynolds, U. Bansode, S. Chhatre, S. Ogale, N. Robertson and S. A. Haque, Phys. Chem. Chem. Phys., 15, 7679 (2013).CrossRefGoogle Scholar
  39. 39.
    O. Pitois, P. Moucheront and X. Chateau, J. Colloid Interface Sci., 231, 26 (2000).CrossRefGoogle Scholar
  40. 40.
    M. W. Allen, Measurement of Fluorescence Quantum Yields, Thermo Sci., 1 (2010).Google Scholar
  41. 41.
    X. F. Ding, L. J. Wen, X. Zhou, Y. Y. Ding, X. C. Ye, L. Zhou, M. C. Liu, H. Cai and J. Cao, Chinese Phys. C., 39 (2015).Google Scholar
  42. 42.
    H. Forster, Mol. Sieves, 4, 337 (2004).Google Scholar
  43. 43.
    V. I. Klimov, Science (80-.), 290, 314 (2000).CrossRefGoogle Scholar
  44. 44.
    A. D. Guclu, P. Potasz and P. Hawrylak, Phys. Rev. B - Condens. Matter Mater. Phys., 82 (2010).Google Scholar
  45. 45.
    W. W. Yu, Y. A. Wang and X. Peng, Chem. Mater., 15, 4300 (2003).CrossRefGoogle Scholar
  46. 46.
    Z. Lu, C. X. Guo, H. Bin Yang, Y. Qiao, J. Guo and C. M. Li, J. Colloid Interface Sci., 353, 588 (2011).CrossRefGoogle Scholar
  47. 47.
    J. Zhu, S. N. Wang, J. J. Li and J. W. Zhao, J. Lumin., 199, 216 (2018).CrossRefGoogle Scholar
  48. 48.
    W. Shockley and H. J. Queisser, J. Appl. Phys., 32, 510 (1961).CrossRefGoogle Scholar
  49. 49.
    A. Kalnaitytė, S. Bagdonas and R. Rotomskis, J. Lumin., 201, 434 (2018).CrossRefGoogle Scholar
  50. 50.
    Z. Yu, J. Li, D. B. O’Connor, L. W. Wang and P. F. Barbara, J. Phys. Chem. B., 107, 5670 (2003).CrossRefGoogle Scholar
  51. 51.
    J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter and S. Coe-Sullivan, Dig. Tech. Pap. - SID Int. Symp., 44, 943 (2013).CrossRefGoogle Scholar
  52. 52.
    F. Li, L. You, H. Li, X. Gu, J. Wei, X. Jin, C. Nie, Q. Zhang and Q. Li, J. Lumin., 192, 867 (2017).CrossRefGoogle Scholar
  53. 53.
    Y. Zhang, J. Lumin., 192, 1015 (2017).CrossRefGoogle Scholar
  54. 54.
    M. Amelia, C. Lincheneau, S. Silvi and A. Credi, Chem. Soc. Rev., 41, 5728 (2012).CrossRefGoogle Scholar
  55. 55.
    R. He, X. You, H. Tian, F. Gao and D. Cui, Front. Chem. China., 3, 325 (2008).CrossRefGoogle Scholar
  56. 56.
    A. Arivarasan, S. Bharathi, V. Vijayaraj, G. Sasikala and R. Jayavel, J. Inorg. Organomet. Polym. Mater., 28, 1263 (2018).CrossRefGoogle Scholar
  57. 57.
    A. Ayyaswamy, S. Ganapathy, A. Alsalme, A. Alghamdi and J. Ramasamy, Superlattices Microstruct., 88, 634 (2015).CrossRefGoogle Scholar
  58. 58.
    D. S. M. Ribeiro, G. C. S. de Souza, A. Melo, J. X. Soares, S. S. M. Rodrigues, A. N. Araujo, M. C. B. S. M. Montenegro and J. L. M. Santos, J. Mater. Sci., 52, 3208 (2017).CrossRefGoogle Scholar
  59. 59.
    H. Bao, E. Wang and S. Dong, Small, 2, 476 (2006).CrossRefGoogle Scholar
  60. 60.
    V. Lesnyak, S. V. Voitekhovich, P. N. Gaponik, N. Gaponik and A. Eychmuller, ACS Nano., 4, 4090 (2010).CrossRefGoogle Scholar
  61. 61.
    A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich and J. F. J. Phys. Chem. C., 111, 14628 (2007).CrossRefGoogle Scholar
  62. 62.
    S. Kiprotich, M. O. Onani and F. B. Dejene, Phys. B Condens. Matter., 535, 202 (2018).CrossRefGoogle Scholar
  63. 63.
    R. E. Bailey and S. Nie, J. Am. Chem. Soc., 125, 7100 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Erdem Elibol
    • 1
    Email author
  • Pınar Sevim Elibol
    • 2
  • Musa Çadırcı
    • 1
  • Nedim Tutkun
    • 3
  1. 1.Dept. of Electrical & Electronics EngineeringDuzce UniversityDuzceTurkey
  2. 2.Dept. of Environmental EngineeringDuzce UniversityDuzceTurkey
  3. 3.Dept. of Electrical & Electronics EngineeringIstanbul Aydın UniversityIstanbulTurkey

Personalised recommendations