Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 563–572 | Cite as

Palladium-copper membrane modules for hydrogen separation at elevated temperature and pressure

  • Dong-Kyu Moon
  • Yun-Jin Han
  • Gina Bang
  • Jeong-Hoon Kim
  • Chang-Ha LeeEmail author
Separation Technology, Thermodynamics


Two Pd-Cu alloy membrane modules were designed to recover high-purity hydrogen from a mixture at elevated temperature and pressure. Permeation and separation behavior were studied experimentally and theoretically using pure hydrogen gas and a binary mixture of H2/CO2 (58.2: 41.8 in vol%) at 250–350 °C and 800–1,200 kPa. The Pd-Cu membrane modules presented a maximum permeation flux at the highest temperature (350 °C) and pressure (1,200 kPa) both for pure H2 gas and the binary mixture. When the permeate and retentate flowed in the same direction in the membrane module (co-current flow), a temperature gradient and permeation flux variations were observed and the permeance of the H2/CO2 mixture was 2.263×10−4 mL/(cm2·s·Pa0.5) at 250 °C and 3.409×10−4 mL/(cm2·s·Pa0.5) at 350 °C. On the other hand, when the retentate flowed in the opposite direction to the permeate flow (counter-current flow), the temperature gradient and permeation flux variations were significantly reduced and the permeation flux improved by about 11% from that of the co-current flow module. The well-distributed temperature profile inside the module and increased hydrogen pressure difference through the membrane layer shortened the time to reach the steady state in the counter-current Pd-Cu membrane module, thus enhancing the membrane performance. The results of this study can contribute towards developing an efficient Pd-Cu membrane reactor.


Pd-Cu Membrane Hydrogen Separation Hydrogen/Carbon Dioxide Mixture Counter-current Flow Module 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Adhikari and S. Fernando, Ind. Eng. Chem. Res., 45, 875 (2006).CrossRefGoogle Scholar
  2. 2.
    W. Hu, X. Wu, Z. Li and J. Yang, Phys. Chem. Chem. Phys., 15, 5753 (2013).CrossRefGoogle Scholar
  3. 3.
    M. D. Dolan, J. Membr. Sci., 362, 12 (2010).CrossRefGoogle Scholar
  4. 4.
    Y.-J. Han, J.-H. Kang, H.-E. Kim, J.-H. Moon, C.-H. Cho and C.-H. Lee, Ind. Eng. Chem. Res., 56, 2582 (2017).CrossRefGoogle Scholar
  5. 5.
    Y.-J. Han, K.-J. Ko, H.-K. Choi, J.-H. Moon and C.-H. Lee, Sep. Purif. Technol., 182, 151 (2017).CrossRefGoogle Scholar
  6. 6.
    S. K. Gade, P. M. Thoen and J. D. Way, J. Membr. Sci., 316, 112 (2008).CrossRefGoogle Scholar
  7. 7.
    M. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian and S. Mohebi, Palladium membranes applications in reaction systems for hydrogen separation and purification: A review, Chemical Engineering and Processing: Process Intensification (2017).Google Scholar
  8. 8.
    H. Gao, Y. Lin, Y. Li and B. Zhang, Ind. Eng. Chem. Res., 43, 6920 (2004).CrossRefGoogle Scholar
  9. 9.
    N. Al-Mufachi, N. Rees and R. Steinberger-Wilkens, Renew. Sust. Energy Rev., 47, 540 (2015).CrossRefGoogle Scholar
  10. 10.
    J. D. Way, Palladium/copper alloy composite membranes for high temperature hydrogen separation from coal-derived gas streams, Colorado School of Mines (US) (2003).Google Scholar
  11. 11.
    J. J. Conde, M. Maroño and J. M. Sánchez-Hervás, Sep. Purif. Rev., 46, 152 (2017).CrossRefGoogle Scholar
  12. 12.
    V. Gryaznov, Platinum Met. Rev., 30, 68 (1986).Google Scholar
  13. 13.
    T. A. Peters, T. Kaleta, M. Stange and R. Bredesen, J. Membr. Sci., 383, 124 (2011).CrossRefGoogle Scholar
  14. 14.
    F. Gallucci, E. Fernandez, P. Corengia and M. van Sint Annaland, Chem. Eng. Sci., 92, 40 (2013).CrossRefGoogle Scholar
  15. 15.
    N. Baronskaya, T. Minyukova, A. Sipatrov, M. Demeshkina, A. Khassin, S. Dimov, S. Kozlov, V. Kuznetsov, V. Y. Terentiev and A. Khristolyubov, Chem. Eng. J., 134, 195 (2007).CrossRefGoogle Scholar
  16. 16.
    C. T. Blaisdell and K. Kammermeyer, Chem. Eng. Sci., 28, 1249 (1973).CrossRefGoogle Scholar
  17. 17.
    A. Basile, L. Paturzo and F. Gallucci, Catal. Today, 82, 275 (2003).CrossRefGoogle Scholar
  18. 18.
    F. Gallucci, M. De Falco, S. Tosti, L. Marrelli and A. Basile, Int. J. Hydrogen Energy, 33, 6165 (2008).CrossRefGoogle Scholar
  19. 19.
    A. Basile, S. Tosti, G. Capannelli, G. Vitulli, A. Iulianelli, F. Gallucci and E. Drioli, Catal. Today, 118, 237 (2006).CrossRefGoogle Scholar
  20. 20.
    V. Piemonte, M. De Falco, B. Favetta and A. Basile, Int. J. Hydrogen Energy, 35, 12609 (2010).CrossRefGoogle Scholar
  21. 21.
    C.-H. Kim, J.-Y. Han, H. Lim, D.-W. Kim and S.-K. Ryi, Korean J. Chem. Eng., 34, 1260 (2017).CrossRefGoogle Scholar
  22. 22.
    J. H. Moon and C. H. Lee, AIChE J., 53, 3125 (2007).CrossRefGoogle Scholar
  23. 23.
    J.-H. Moon, J.-H. Bae, Y.-J. Han and C.-H. Lee, J. Membr. Sci., 356, 58 (2010).CrossRefGoogle Scholar
  24. 24.
    X. He, D. R. Nieto, A. Lindbråthen and M. B. Hägg, Membrane System Design for CO2 Capture: From Molecular Modeling to Process Simulation, Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration, 10249 (2017).Google Scholar
  25. 25.
    F. Ahmad, K. Lau, S. Lock, S. Rafiq, A. U. Khan and M. Lee, J. Ind. Eng. Chem., 21, 1246 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. Huang, T. C. Merkel and R. W. Baker, J. Membr. Sci., 463, 33 (2014).CrossRefGoogle Scholar
  27. 27.
    A. Caravella, F. Scura, G. Barbieri and E. Drioli, J. Phys. Chem. B, 114, 6033 (2010).CrossRefGoogle Scholar
  28. 28.
    D. Mendes, S. Sá, S. Tosti, J. M. Sousa, L. M. Madeira and A. Mendes, Chem. Eng. Sci., 66, 2356 (2011).CrossRefGoogle Scholar
  29. 29.
    F. C. Gielens, H. D. Tong, M. A. G. Vorstman and J. T. F. Keurentjes, J. Membr. Sci., 289, 15 (2007).CrossRefGoogle Scholar
  30. 30.
    T. L. Ward and T. Dao, J. Membr. Sci., 153, 211 (1999).CrossRefGoogle Scholar
  31. 31.
    J.-H. Moon, J.-H. Bae, Y.-S. Bae, J.-T. Chung and C.-H. Lee, J. Membr. Sci., 318, 45 (2008).CrossRefGoogle Scholar
  32. 32.
    L. Yuan, A. Goldbach and H. Xu, J. Phys. Chem. B, 111, 10952 (2007).CrossRefGoogle Scholar
  33. 33.
    B. Howard, R. Killmeyer, K. Rothenberger, A. Cugini, B. Morreale, R. Enick and F. Bustamante, J. Membr. Sci., 241, 207 (2004).CrossRefGoogle Scholar
  34. 34.
    A. Goldbach, L. Yuan and H. Xu, Sep. Purif. Technol., 73, 65 (2010).CrossRefGoogle Scholar
  35. 35.
    F. Bustamante, R. Enick, A. Cugini, R. Killmeyer, B. Howard, K. Rothenberger, M. Ciocco, B. Morreale, S. Chattopadhyay and S. Shi, AIChE J., 50, 1028 (2004).CrossRefGoogle Scholar
  36. 36.
    R. K. Helling and J. W. Tester, Energy Fuels, 1, 417 (1987).CrossRefGoogle Scholar
  37. 37.
    A. Kulprathipanja, G. O. Alptekin, J. L. Falconer and J. D. Way, Ind. Eng. Chem. Res., 43, 4188 (2004).CrossRefGoogle Scholar
  38. 38.
    A. Basile, G. Chiappetta, S. Tosti and V. Violante, Sep. Purif. Technol., 25, 549 (2001).CrossRefGoogle Scholar
  39. 39.
    S.-W. Lee, J.-S. Park, C.-B. Lee, D.-W. Lee, H. Kim, H. W. Ra, S.-H. Kim and S.-K. Ryi, Energy, 66, 635 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Dong-Kyu Moon
    • 1
  • Yun-Jin Han
    • 1
  • Gina Bang
    • 1
  • Jeong-Hoon Kim
    • 2
  • Chang-Ha Lee
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulKorea
  2. 2.Carbon Resources InstituteKorea Research Institute of Chemical TechnologyDaejeonKorea

Personalised recommendations