Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 513–521 | Cite as

One-pot synthesis of lactic acid from cellulose over a sulfonated Sn-KIT6 catalyst

  • Weijie Cai
  • Qing Chen
  • Hao Xuan
  • Congming Li
  • Hao Yu
  • Li Cui
  • Zhihui YuEmail author
  • Shaoyin Zhang
  • Fengzuo QuEmail author
Catalysis, Reaction Engineering
  • 12 Downloads

Abstract

A sulfonated Sn-doped KIT-6 catalyst (Sn-KIT-6-Pr-SO3H) was successfully prepared via the hydrothermal self-assembly method, and its performance towards to value-added lactic acid production from one-pot conversion of renewable cellulose was investigated. Indeed, the physicochemical features of the as-prepared catalysts were deeply characterized by various techniques, including XRD, BET, SEM, FT-IR, XPS, UV-vis and TGA-DSC. The results confirmed its high BET surface area with an ultrahigh cross-linked framework and promising acid strength (co-existence of Brønsted and Lewis acidity). Additionally, the impact of different reaction factors, such as the type of catalysts, temperature, time, recyclability on cellulose conversion and the yield of targeted lactic acid, were determined. Meanwhile, the developed catalyst depicted the promising activity and stability under the optimal reaction conditions. It could be recycled at least four times without any obvious deactivation. This provides insight into developing efficient catalytic systems to convert renewable biomass into value-added chemicals.

Keywords

Lactic Acid Cellulose KIT-6 Sulfonation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Mei, J. Liu, W. Fu, T. Tang and D. Wu, ACS Sustainable. Chem. Eng., 5, 5800 (2017).CrossRefGoogle Scholar
  2. 2.
    S. S. Kim, H. V. Ly, B. H. Chun, J. H. Ko and J. Kim, Korean J. Chem. Eng., 33, 3128 (2016).CrossRefGoogle Scholar
  3. 3.
    J. D. Zhu, L. H. Gan, B. X. Li and X. Yang, Korean J. Chem. Eng., 34, 110 (2017).CrossRefGoogle Scholar
  4. 4.
    R. A. Oliveira, A. Komesu, C. E. V. Rossell and R. M. Filho, Biochem. Eng. J., 133, 219 (2018).CrossRefGoogle Scholar
  5. 5.
    A. J. Ryu, T. Y. Kim, D. S. Yang, J. H. Park and J. J. Jeong, Korean J. Chem. Eng., 35, 1673 (2018).CrossRefGoogle Scholar
  6. 6.
    O. Oguz, K. Bilge, E. Simsek, M. K. Citak, A. A. Wis, G. Ozkoc and Y. Z. Menceloglu, Ind. Eng. Chem. Res., 56, 8568 (2017).CrossRefGoogle Scholar
  7. 7.
    C. M. Tang, J. S. Peng, X. L. Li, Z. J. Zha, H. J. Gao, W. Bai, N. Jiang and Y. W. Liao, Korean J. Chem. Eng., 33, 99 (2016).CrossRefGoogle Scholar
  8. 8.
    A. S. Qureshi, J. A. Zhang, L. C. Sousa and J. Bao, ACS Sustainable. Chem. Eng., 5, 9254 (2017).CrossRefGoogle Scholar
  9. 9.
    P. Wattanapaphawong, P. Reubroycharoen and A. Yamaguchi, RSC Adv., 7, 18561 (2017).CrossRefGoogle Scholar
  10. 10.
    K. Nakajima, J. Hirata, M. Kim, N. K. Gupta, T. Murayama, A. Yoshida, N. Hiyoshi, A. Fukuka and W. Ueda, ACS Catal., 8, 283 (2018).CrossRefGoogle Scholar
  11. 11.
    L. Li, X. Collard, A. Bertrand, B. F. Sels, P. P. Pescarmona and C. Aprile, J. Catal., 314, 56 (2014).CrossRefGoogle Scholar
  12. 12.
    L. Y. Li, F. Shen, R. L. Smith and X. H. Qi, Green. Chem., 19, 76 (2017).CrossRefGoogle Scholar
  13. 13.
    M. S. Holm, S. Saravanamurugan and E. Taarning, Science, 328, 602 (2010).CrossRefGoogle Scholar
  14. 14.
    M. S. Holm, Y. J. Pagán-Torres, S. Saravanamurugan, A. Riisager, J. A. Dumesic and E. Taarning, Green. Chem., 14, 702 (2012).CrossRefGoogle Scholar
  15. 15.
    W. P. Deng, Q. H. Zhang and Y. Wang, Catal. Today, 234, 31 (2014).CrossRefGoogle Scholar
  16. 16.
    L. S. Yang, J. Su, S. Carl, J. G. Lynam, X. K. Yang and H. F. Lin, Appl. Catal. B., 162, 149 (2015).CrossRefGoogle Scholar
  17. 17.
    G. Z. Wang, X. F. Tan, H. Lv, M. M. Zhao, M. Wu, J. P. Zhou, X. M. Zhang and L. N. Zhang, Ind. Eng. Chem. Res., 55, 5263 (2016).CrossRefGoogle Scholar
  18. 18.
    X. Y. Yan, F. M. Jin, K. Tohji, A. Kishita and H. Enomoto, AIChE J., 56, 2727 (2010).CrossRefGoogle Scholar
  19. 19.
    X. Lei, F. F. Wang, C. L. Liu, R. Z. Yang and W. S. Dong, Appl. Catal. A., 482, 78 (2014).CrossRefGoogle Scholar
  20. 20.
    F. F. Wang, J. Liu, H. Li, C. L. Liu, R. Z. Yang and W. S. Dong, Green. Chem., 17, 2455 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Z. Wu, H. F. Ren, C. L. Liu, C. L. Xu and W. S. Dong, J. Porous. Mater., 24, 697 (2017).CrossRefGoogle Scholar
  22. 22.
    C. Sánchez, A. García, R. Llano-Ponte and J. Labidi, Chem. Eng. J., 181-182, 655 (2012).CrossRefGoogle Scholar
  23. 23.
    Y. L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang, X. Y. Wan, Z. C. Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang and H. L. Wan, Nat. Commun., 4, 2141 (2013).CrossRefGoogle Scholar
  24. 24.
    W. P. Deng, P. Wang, B. J. Wang, Y. L. Wang, L. F. Yang, Y. Y. Li, Q. H. Zhang, Z. X. Cao and Y. Wang, Green. Chem., 20, 735 (2018).CrossRefGoogle Scholar
  25. 25.
    S. Zhang, F. Jin, J. Hu and Z. Huo, Bioresour. Technol., 102, 1998 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Tolborg, I. Sadaba, C. M. Osmundsen, P. Fristrup, M. S. Holm and E. Taarning, Chem. Sus. Chem., 8, 613 (2015).CrossRefGoogle Scholar
  27. 27.
    A. G. Daful and J. F. Görgens, Chem. Eng. Sci., 162, 53 (2017).CrossRefGoogle Scholar
  28. 28.
    D. Verma, R. Insyani, Y. W. Suh, S. M. Kim and J. Kim, Green. Chem., 19, 1969 (2017).CrossRefGoogle Scholar
  29. 29.
    F. Chambon, F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and N. Essayem, Appl. Catal. B, 105, 171 (2011).CrossRefGoogle Scholar
  30. 30.
    Z. Liu, W. Li, C. Pan, P. Chen, H. Lou and X. Zheng, Catal. Commun., 15, 82 (2011).CrossRefGoogle Scholar
  31. 31.
    T. N. Ng, X. Q. Chenac and K. L. Yeung, RSC Adv., 5, 13331 (2015).CrossRefGoogle Scholar
  32. 32.
    X. Chen, M. Arruebo and K. L. Yeung, Catal. Today, 204, 140 (2013).CrossRefGoogle Scholar
  33. 33.
    X. Guo, Q. Cao, Y. Jiang, J. Guan, X. Wang and X. Mu, Carbohydr. Res., 351, 35 (2012).CrossRefGoogle Scholar
  34. 34.
    C. W. Jiang, A. X. Su and X. M. Li, Adv. Mater. Res., 396, 1190 (2011).CrossRefGoogle Scholar
  35. 35.
    H. F. Xiong, H. N. Pham and A. K. Datye, Green. Chem., 16, 4627 (2014).CrossRefGoogle Scholar
  36. 36.
    Q. Pan, A. Ramanathan, W. K. Snavely, R. V. Chaudhari and B. Subramaniam, Ind. Eng. Chem. Res., 52, 15481 (2013).CrossRefGoogle Scholar
  37. 37.
    H. X. Cao, J. Zhang, C. L. Guo, J. G. Chen and X. K. Ren, Chin. J. Catal., 38, 1127 (2017).CrossRefGoogle Scholar
  38. 38.
    R. Rajalakshmia, R. Maheswaria and A. Ramanathanb, Mater. Res. Bull., 75, 224 (2016).CrossRefGoogle Scholar
  39. 39.
    K. Chaudhari, T. K. Das, P. R. Rajmohanan, K. Lazar, S. Sivasanker and A. J. Chandwadkar, J. Catal., 183, 281 (1999).CrossRefGoogle Scholar
  40. 40.
    J. Panpranot, J. G. Goodwin and A. Sayari, Catal. Today, 77, 269 (2002).CrossRefGoogle Scholar
  41. 41.
    R. Kishor and A. K. Ghoshal, Micropor. Mesopor. Mat., 242, 127 (2017).CrossRefGoogle Scholar
  42. 42.
    E. H. Yuan, W. L. Dai, G. J. Wu, N. J. Guan, M. Hunger and L. D. Li, Micropor. Mesopor. Mat., 270, 265 (2018).CrossRefGoogle Scholar
  43. 43.
    W. N. P. van der Graaff, G. N. Li, B. Mezari, E. A. Pidko and E. J. M. Hensen, Chem. Cat. Chem., 7, 1152 (2015).Google Scholar
  44. 44.
    M. P. Pachamuthu, K. Shanthi, R. Luque and A. Ramanathan, Green. Chem., 15, 2158 (2013).CrossRefGoogle Scholar
  45. 45.
    J. A. Macia-Agullo, M. Sevilla, A. Diez and A. B. Fuertes, Chem. Sus. Chem., 3, 1352 (2010).CrossRefGoogle Scholar
  46. 46.
    Q. Wu, F. J. Liu, X. F. Yi, Y. C. Zou and L. L. Jiang, Green. Chem., 20, 1020 (2018).CrossRefGoogle Scholar
  47. 47.
    Y. H. Guo, C. Xia and B. S. Liu, Chem. Eng. J., 237, 421 (2014).CrossRefGoogle Scholar
  48. 48.
    A. Corma, M. T. Navarro and M. Rene, J. Catal., 219, 242 (2003).CrossRefGoogle Scholar
  49. 49.
    H. Zhao, J. E. Holladay, H. Brown and Z. C. Zhang, Science, 316, 1597 (2007).CrossRefGoogle Scholar
  50. 50.
    F. F. Wang, C. L. Liu and W. S. Dong, Green. Chem., 15, 2091 (2013).CrossRefGoogle Scholar
  51. 51.
    L. Hu, L. Lin, Z. Wu, S. Y. Zhou and S. J. Liu, Appl. Catal. B., 174-175, 225 (2015).CrossRefGoogle Scholar
  52. 52.
    E. Taarning, S. Saravanamurugan, M. S. Holm, J. Xiong and R. M. West, Chem. Sus. Chem., 2, 625 (2009).CrossRefGoogle Scholar
  53. 53.
    L. Q. Shen, X. Zhou, A. L. Wang, H. B. Yin, H. X. Yin and W. J. Cui, RSC Adv., 7, 30725 (2017).CrossRefGoogle Scholar
  54. 54.
    S. Kobayashi, M. Sugiura, H. Kitagawa and W. W. L. Lam, Chem. Rev., 102, 2227 (2002).CrossRefGoogle Scholar
  55. 55.
    L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang and Y. Gong, Molecules, 15, 5258 (2010).Google Scholar
  56. 56.
    A. Prabhu, L. Kumaresan, M. Palanichamy and V. Murugesan, Appl. Catal. A., 360, 59 (2009).CrossRefGoogle Scholar
  57. 57.
    Y. Zhang, J. Wang, J. Ren, X. Liu, X. Li, Y. Xia, G. Lu and Y. Wang, Catal. Sci. Technol., 2, 2485 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Weijie Cai
    • 1
  • Qing Chen
    • 1
  • Hao Xuan
    • 1
  • Congming Li
    • 2
  • Hao Yu
    • 3
  • Li Cui
    • 1
  • Zhihui Yu
    • 1
    Email author
  • Shaoyin Zhang
    • 1
  • Fengzuo Qu
    • 1
    Email author
  1. 1.Faculty of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalianChina
  2. 2.State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and TechnologyTaiyuan University of TechnologyTaiyuanChina
  3. 3.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations