Engineering Trichosporon oleaginosus for enhanced production of lipid from volatile fatty acids as carbon source

  • Kyungsoo Lee
  • Yong Jae Lee
  • Ho Nam Chang
  • Ki Jun JeongEmail author
Research papers


Trichosporon oleaginosus is one of the most promising hosts for microbial lipid production owing to its high-productivity. In an effort to develop an economical production process, we engineered T. oleaginosus towards high-lipid production from volatile fatty acids (VFA) derived from anaerobic fermentation of food waste. First, we established a method for labeling intracellular lipid with lipophilic BODIPY fluorescent dye. Next, a random library was constructed by treatment with a chemical mutagen, and high-lipid producers were screened using fluorescenceactivated cell sorting. Subsequently, one clone, N14, was successfully isolated, which exhibited 3-fold higher lipid production (19.4%) in VFA (6 g/L) media than the wild-type strain, and also showed increased lipid production in higher concentrations of VFA (18 or 24 g/L). Based on fatty acid methyl ester (FAME) analysis, N14 contained higher stearic acid (C18:0) and oleic acid (C18:1) content compared with those of the wild-type strain.


Trichosporon oleaginosus Volatile Fatty Acids Fluorescence-activated Cell Sorting Microbial Lipid BODIPY 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_229_MOESM1_ESM.pdf (221 kb)
Engineering Trichosporon oleaginosus for enhanced production of lipid from volatile fatty acids as carbon source


  1. 1.
    P. Gujjari, S. O. Suh, K. Coumes and J. J. Zhou, Mycologia, 103, 1110 (2011).Google Scholar
  2. 2.
    A. Yaguchi, D. Rives and M. Blenner, AIMS Microbiol., 3, 227 (2017).Google Scholar
  3. 3.
    A. Meo, X. L. Priebe and D. Weuster-Botz, J. Biotechnol., 241, 1 (2017).Google Scholar
  4. 4.
    B. G. Ryu, J. Kim, K. Kim, Y. E. Choi, J. I. Han and J. W. Yang, Bioresour. Technol., 135, 357 (2013).Google Scholar
  5. 5.
    Z. Chi, Y. Zheng, J. Ma and S. Chen, Int. J. Hydrogen Energy, 36, 9542 (2011).Google Scholar
  6. 6.
    X. Xu, J. Y. Kim, H. U. Cho, H. R. Park and J. M. Park, Chem. Eng. J., 264, 735 (2014).Google Scholar
  7. 7.
    Z. Gong, H. Shen, W. Zhou, Y. Wang, X. Yang and Z. K. Zhao, Biotechnol. Biofuels, 8, 189 (2015).Google Scholar
  8. 8.
    M. Kim, D. Li, O. Choi, B. -I. Sang, P. C. Chiang and H. Kim, Korean J. Chem. Eng., 34, 2678 (2017).Google Scholar
  9. 9.
    S. -J. Lim, D. W. Choi, W. G. Lee, S. Kwon and H. N. Chang, Bioprocess Eng., 22, 543 (2000).Google Scholar
  10. 10.
    W. G. Kidanu, P. T. Trang and H. H. Yoon, Biotechnol. Bioprocess Eng., 22, 612 (2017).Google Scholar
  11. 11.
    D. Li, M. Kim, H. Kim, O. Choi, B. -I. Sang, P. C. Chiang and H. Kim, Korean J. Chem. Eng., 35, 179 (2018).Google Scholar
  12. 12.
    G. W. Park, Q. Fei, K. Jung, H. N. Chang, Y. C. Kim, N. J. Kim, J. D. Choi, S. Kim and J. Cho, Biotechnol. J., 9, 1536 (2014).Google Scholar
  13. 13.
    Q. Fei, H. N. Chang, L. Shang, J. D. Choi, N. J. Kim and J. W. Kang, Bioresour. Technol., 102, 2695 (2011).Google Scholar
  14. 14.
    D. Close and J. Ojumu, Genome Announc., 4, e01235-16 (2016).Google Scholar
  15. 15.
    R. Kourist, F. Bracharz, J. Lorenzen, O. N. Kracht, M. Chovatia, C. Daum, S. Deshpande, A. Lipzen, M. Nolan, R. A. Ohm, I. V. Grigoriev, S. Sun, J. Heitman, T. Bruck and M. Nowrousian, mBio, 6, e00918 (2015).Google Scholar
  16. 16.
    C. Gorner, V. Redai, F. Bracharz, P. Schrepfer, D. Garbe and T. Bruck, Green Chem., 18, 2037 (2016).Google Scholar
  17. 17.
    S. S. Yim, H. B. Bang, Y. H. Kim, Y. J. Lee, G. M. Jeong and K. J. Jeong, PLOS One, 9, e108225 (2014).Google Scholar
  18. 18.
    S. L. Choi, E. Rha, S. J. Lee, H. Kim, K. Kwon, Y. S. Jeong, Y. H. Rhee, J. J. Song, H. S. Kim and S. G. Lee, ACS Synth. Biol., 3, 163 (2014).Google Scholar
  19. 19.
    N. Velmurugan, M. Sung, S. S. Yim, M. S. Park, J. W. Yang and K. J. Jeong, Bioresour. Technol., 138, 30 (2013).Google Scholar
  20. 20.
    N. Velmurugan, M. Sung, S. S. Yim, M. S. Park, J. W. Yang and K. J. Jeong, Biotechnol. Biofuels, 7, 117 (2014).Google Scholar
  21. 21.
    S. S. Yim, J. W. Choi, S. H. Lee and K. J. Jeong, ACS Synth. Biol., 5, 334 (2014).Google Scholar
  22. 22.
    W. D. Hollinshead, A. M. Varman, L. You, A. Hembree and Y. J. Tang, Bioresour. Technol., 169, 462 (2014).Google Scholar
  23. 23.
    J. Liu, M. Yuan, J. N. Liu and X. F. Huang, Bioresour. Technol., 241, 645 (2017).Google Scholar
  24. 24.
    A. Chalima, L. Oliver, L. F. de Castro, A. Karnaouri, T. Dietrich and E. Topakas, Fermentation, 3, 54 (2017).Google Scholar
  25. 25.
    E. Kameda, F. F. Martins, P. F. F. Amaral, E. A. Valoni and M. A. Z. Coelho, Chem. Eng. Trans., 38, 529 (2014).Google Scholar
  26. 26.
    G. R. Stansell, V. M. Gray and S. D. Sym, J. Appl. Phycol., 24, 791 (2012).Google Scholar
  27. 27.
    A. J. Kinney and T. E. Clemente, Fuel Process. Technol., 86, 1137. (2005).Google Scholar
  28. 28.
    S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Renew. Sust. Energy Rev., 16, 143 (2012).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Kyungsoo Lee
    • 1
  • Yong Jae Lee
    • 2
  • Ho Nam Chang
    • 3
  • Ki Jun Jeong
    • 1
    • 4
    Email author
  1. 1.Department of Chemical and Biomolecular Engineering (BK21 Program)DaejeonKorea
  2. 2.Cell Factory Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
  3. 3.Lab to Market, Inc.SeoulKorea
  4. 4.Institute for the BioCenturyDaejeonKorea

Personalised recommendations