Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Rodrigue Tchamna
  • Muhammad Abdul Qyyum
  • Muhammad Zahoor
  • Camille Kamga
  • Ezra Kwok
  • Moonyong LeeEmail author


This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.


Optimal IMC Control Operational Constraints Constrained Optimization Analytical Design Approach Constraint Handling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. L. T. Duong, L. Q. Minh, M. A. Qyyum and M. Lee, Chem. Eng. Res. Des., 137, 553 (2018).CrossRefGoogle Scholar
  2. 2.
    W. Ali, P. L. T. Duong, M. A. Qyyum, A. Nawaz and M. Lee, Comput. Aided Chem. Eng., 40, 439 (2017).CrossRefGoogle Scholar
  3. 3.
    D. Chen and D. E. Seborg, Ind. Eng. Chem. Res., 41, 4807 (2002).CrossRefGoogle Scholar
  4. 4.
    D. E. Rivera, M. Morari and S. Skogestad, Ind. Eng. Chem. Process Des. Dev., 25, 252 (1986).CrossRefGoogle Scholar
  5. 5.
    J. M. Vandeursen and J. A. Peperstraete, Int. J. Control, 62, 983 (1995).CrossRefGoogle Scholar
  6. 6.
    I. G. Horn, J. R. Arulandu, C. J. Gombas, J. G. VanAntwerp and R. D. Braatz, Ind. Eng. Chem. Res., 35, 3437 (1996).CrossRefGoogle Scholar
  7. 7.
    P. V. G. K. Rao, M. V. Subramanyam and K. Satyaprasad, Syst. Sci. Control Eng., 2, 583 (2014).CrossRefGoogle Scholar
  8. 8.
    P. S. Fruehauf, I.-L. Chien and M. D. Lauritsen, ISA Trans., 33, 43 (1994).CrossRefGoogle Scholar
  9. 9.
    Z. Zhao, Z. Liu and J. Zhang, J. Cent. South Univ. Technol., 18, 1153 (2011).CrossRefGoogle Scholar
  10. 10.
    K. G. Begum, A. S. Rao and T. K. Radhakrishnan, ISA Trans., 68, 223 (2017).CrossRefGoogle Scholar
  11. 11.
    K. Liu, T. Shimizu, M. Inagaki and A. Ohkawa, J. Chem. Eng. Japan, 31, 320 (1998).CrossRefGoogle Scholar
  12. 12.
    M. Shamsuzzoha, M. Skliar and M. Lee, Asia-Pacific J. Chem. Eng., 7, 93 (2012).CrossRefGoogle Scholar
  13. 13.
    H. C. T. Thu and M. Lee, Korean J. Chem. Eng., 30, 2151 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Rodrigue Tchamna
    • 1
    • 2
  • Muhammad Abdul Qyyum
    • 1
  • Muhammad Zahoor
    • 1
  • Camille Kamga
    • 2
  • Ezra Kwok
    • 3
  • Moonyong Lee
    • 1
    Email author
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.University Transportation Research Center, City College of New YorkNew YorkU.S.A.
  3. 3.Chemical & Biological Engineering, University of British ColumbiaVancouverCanada

Personalised recommendations