Synthesis and performance evaluation of zeolitic imidazolate framework-8 membranes deposited onto alumina hollow fiber for desalination

  • Nizar Mu’ammar Mahpoz
  • Norfazliana Abdullah
  • Mohamad Zahir Mohd Pauzi
  • Mukhlis A. RahmanEmail author
  • Khairul Hamimah Abas
  • Azian Abd Aziz
  • Mohd Hafiz Dzarfan Othman
  • Juhana Jaafar
  • Ahmad Fauzi Ismail


This work describes the development of zeolitic imidazolate framework-8 (ZIF-8) membranes on modified alumina hollow fiber for desalination by forward osmosis. Effects of different seeds (ZnO, NiO and PDA) and sodium formate on in-situ deposition of ZIF-8 were studied in relation to the membrane’s morphology and performance. XRD result shows that ZIF-8 was successfully synthesized in the presence of sodium formate. FESEM images showed PDA modified support was unsuccessful in producing well defined and dense ZIF-8 membrane layer even after another ZIF-8 re-deposition due to its minimal amount. The NiO modified support was also found unsuccessful, as ZIF-8 crystals were formed in clusters. On the contrary, dense ZIF-8 membrane was successfully prepared on ZnO modified support with SF-1 synthesis solution producing bigger ZIF-8 crystal and thinner ZIF-8 membrane than as of SF-2. Water flux performance in forward osmosis showed that NiO/ZIF-8, PDA/ZIF-8 and PDA/ZIF-8 (re-deposition) membranes gave negative water fluxes of -50 kg/m2·h, -5.2 kg/m2·h and -1.7 kg/m2·h with reverse solutes of 42.66 mol/m2·h, 27.42mol/m2·h and 3.22 mol/m2·h, respectively, indicating the solute from draw solution diffused into the feed solution. However, ZIF-8 membrane prepared using SF with molar ratio of 1, on the ZnO modified support had a water flux of 13.3 kg/m2·h, reverse solute of 0.95 kg/m2·h and salt rejection of 52.1%. When the SF ratio was increased to 2, the ZIF-8 membranes showed a water flux of 12.5 kg/m2·h, reverse solute of 1.64 kg/m2·h and salt rejection of 54.9%. The moderate salt rejection could be associated with defects in the ZIF-8 membranes due to poor grain boundaries.


Metal Organic Framework Zeolitic Imidazolate Framework Membrane Desalination Forward Osmosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Wang, A. A. Abdalla, M. A. Khaleel, N. Hilal and M. K. Khraisheh, Desalination, 401, 190 (2017).Google Scholar
  2. 2.
    H. Balfaqih, M. T. Al-Nory, Z. M. Nopiah and N. Saibani, Desalination, 406, 2 (2016).Google Scholar
  3. 3.
    P. S. Goh, T. Matsuura, A. F. Ismail and N. Hilal, Desalination, 391, 43 (2016).Google Scholar
  4. 4.
    E. Yang, C. M. Kim, J.-h. Song, H. Ki, M. H. Ham and I. S. Kim, Carbon, 117, 293 (2017).Google Scholar
  5. 5.
    D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin and M. Elimelech, Desalination, 356, 271 (2015).Google Scholar
  6. 6.
    S. Qiu, M. Xue and G. Zhu, Chem. Soc. Rev., 43, 6116 (2014).Google Scholar
  7. 7.
    M. Lismont, L. Dreesen and S. Wuttke, Adv. Funct. Mater., 27, 1 (2017).Google Scholar
  8. 8.
    X. Liu, N. K. Demir, Z. Wu and K. Li, J. Am. Chem. Soc., 137, 6999 (2015).Google Scholar
  9. 9.
    K. S. Park, Z. Ni, A. P. Côte, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe and O. M. Yaghi, Proc. Natl. Acad Sci., 103, 10186 (2006)Google Scholar
  10. 10.
    C. Zhang and W. J. Koros, J. Phys. Chem. Lett., 6, 3841 (2015).Google Scholar
  11. 11.
    Y. Lee, M. Jang, H. Cho, H. Kwon, S. Kim and W. Ahn, Chem. Eng. J., 271, 276 (2015).Google Scholar
  12. 12.
    M. C. Duke, B. Zhu, C. M. Doherty, M. R. Hill, A. J. Hill and M. A. Carreon, Desalination, 377, 128 (2016).Google Scholar
  13. 13.
    Y. Zhu, K. M. Gupta, Q. Liu, J. Jiang, J. Caro and A. Huang, Desalination, 385, 75 (2016).Google Scholar
  14. 14.
    Y. Pan, B. Wang and Z. Lai, J. Membr. Sci., 421-422, 292 (2012).Google Scholar
  15. 15.
    H. Bux, A. Feldho, J. Cravillon, M. Wiebcke, Y. Li and J. Caro, Chem. Mater., 23, 2262 (2011).Google Scholar
  16. 16.
    X. Zhang, Y. Liu, L. Kong, H. Liu, J. Qiu, W. Han and L.-T. Weng, J. Mater. Chem. A, 1, 10635 (2013).Google Scholar
  17. 17.
    L. Kong, X. Zhang, H. Liu and J. Qiu, J. Membr. Sci., 490, 354 (2015).Google Scholar
  18. 18.
    L. Kong, G. Zhang, H. Liu and X. Zhang, Mater. Lett., 141, 344 (2015).Google Scholar
  19. 19.
    A. Huang, Q. Liu, N. Wang and J. Caro, J. Mater. Chem. A, 2, 8246 (2014).Google Scholar
  20. 20.
    M. Drobek, M. Bechelany, C. Vallicari, A. A. Chaaya, C. Charmette, C. Salvador-levehang, P. Miele and A. Julbe, J. Membr. Sci., 475, 39 (2015).Google Scholar
  21. 21.
    X. Wang, M. Sun, B. Meng, X. Tan, J. Liu, S. Wang and S. Liu, Chem. Commun., 52, 13448 (2016).Google Scholar
  22. 22.
    P. Neelakanda, E. Barankova and K. V. Peinemann, Micropor. Mesopor. Mater., 220, 215 (2016).Google Scholar
  23. 23.
    M. Wu, H. Ye, F. Zhao and B. Zeng, Sci. Rep., 7, 1 (2017).Google Scholar
  24. 24.
    I. Stassen, M. Styles, G. Grenci, H. Van Gorp, W. Vanderlinden, S. De Feyter, P. Falcaro, D. De Vos, P. Vereecken and R. Ameloot, Nat. Mater., 15, 304 (2016).Google Scholar
  25. 25.
    J. Yang, Z. Xie, H. Yin, J. Wang, J. Xu, J. Wang, J. Lu, D. Yin and Y. Zhang, Micropor. Mesopor. Mater., 198, 263 (2014).Google Scholar
  26. 26.
    H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, Science, 318, 426 (2007).Google Scholar
  27. 27.
    Q. Liu, N. Wang, R. Caro and A. Huang, J. Am. Chem. Soc., 135, 17679 (2013).Google Scholar
  28. 28.
    A. Huang, Q. Liu, N. Wang, Y. Zhu and J. Caro, J. Am. Chem. Soc., 136, 14686 (2014).Google Scholar
  29. 29.
    J. Cravillon, C. A. Schroder, H. Bux, A. A. Rothkirch, J. Caro and M. Wiebcke, CrystEngComm, 14, 492 (2012).Google Scholar
  30. 30.
    M. Shah, H. T. Kwon, V. Tran, S. Sachdeva and H. K. Jeong, Micropor. Mesopor. Mater., 165, 63 (2013).Google Scholar
  31. 31.
    N. Abdullah, M. A. Rahman, M. H. D. Othman, A. F. Ismail, J. Jaafar and A. A. Aziz, Ceram. Int., 42, 12312 (2016).Google Scholar
  32. 32.
    C. Zhou, C. Yuan, Y. Zhu, J. Caro and A. Huang, J. Membr. Sci., 494, 174 (2015).Google Scholar
  33. 33.
    K. Li, Ceramic Membranes for Separation and Reaction, Wiley (2007).Google Scholar
  34. 34.
    F. R. García-García, M. A. Rahman, B. F. K. Kingsbury and K. Li, Appl. Catal. A Gen., 393, 71 (2011).Google Scholar
  35. 35.
    Q. Wei, F. Zhang, J. Li, B. Li and C. Zhao, Polym. Chem., 1, 1430 (2010).Google Scholar
  36. 36.
    A. Barras, J. Lyskawa, S. Szunerits, P. Woisel and R. Boukherroub, Langmuir, 27, 12451 (2011).Google Scholar
  37. 37.
    C. V. Mcguire and R. S. Forgan, Chem. Commun., 51, 5199 (2014).Google Scholar
  38. 38.
    J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber and M. Wiebcke, Chem. Mater., 23, 2130 (2011).Google Scholar
  39. 39.
    H. Zhang, J. James, M. Zhao, Y. Zhang, B. Zhang and Y. S. Lin, J. Membr. Sci., 532, 1 (2017).Google Scholar
  40. 40.
    G. T. Gray, J. R. McCutcheon and M. Elimelech, Desalination, 197, 1 (2006).Google Scholar
  41. 41.
    K. M. Gupta, K. Zhang and J. Jiang, Langmuir, 31, 13230 (2015).Google Scholar
  42. 42.
    Z. Hu, Y. Chen and J. Jiang, J. Chem. Phys., 134, 134705 (2011).Google Scholar
  43. 43.
    D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons and T. Düren, J. Am. Chem. Soc., 133, 8900 (2011).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Nizar Mu’ammar Mahpoz
    • 1
  • Norfazliana Abdullah
    • 1
  • Mohamad Zahir Mohd Pauzi
    • 1
  • Mukhlis A. Rahman
    • 1
    Email author
  • Khairul Hamimah Abas
    • 2
  • Azian Abd Aziz
    • 3
  • Mohd Hafiz Dzarfan Othman
    • 1
  • Juhana Jaafar
    • 1
  • Ahmad Fauzi Ismail
    • 1
  1. 1.Advanced Membrane Technology Research Centre (AMTEC)Universiti Teknologi MalaysiaSkudai, JohorMalaysia
  2. 2.Department of Control & Instrumentation Engineering, Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudai, JohorMalaysia
  3. 3.Language AcademyUniversiti Teknologi MalaysiaSkudai, JohorMalaysia

Personalised recommendations