Advertisement

Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol

  • JungHyeon Kim
  • YoungShin Jang
  • JaeChang Kim
  • DongHyun KimEmail author
Article
  • 11 Downloads

Abstract

Oxidative steam reforming of methanol (OSRM) is autothermal and therefore well suited for hydrogen production. The exothermic part of OSRM generates heat at the reactor inlet to be used as the reaction heat for the endothermic methanol steam reforming in the rest of the reactor. With conventional particle catalysts, a hot spot is formed at the reactor inlet because of the poor thermal conductivity in the catalyst bed. The catalyst at the hot spot is deactivated by thermal sintering. Side reactions such as the reverse water gas shift reaction and methanol decomposition reaction become active at the hot spot. We developed a high-thermal-conductivity Al plate catalyst to suppress the formation of the hot spot in the catalyst bed during OSRM. In particular, a strongly bonded layer of anodic aluminum oxide as a catalyst support was grown on the Al plate surface via anodic oxidation in oxalic acid solution, and the internal surface area of the support was increased by pore widening and hot water treatments. To obtain a catalyst with high activity, multiple impregnations (>three times) and an anodization time of 24 h was needed. The catalyst was deactivated when operated at an elevated temperature of 623 K, but the activity was completely restored by a simple oxidation. Notably, OSRM was proven to be a combination of methanol combustion and methanol steam reforming reactions, and the kinetics of these two reactions were studied in detail.

Keywords

Oxidative Steam Reforming of Methanol Anodic Aluminum Oxide Aluminum Plate Catalyst Methanol Combustion Methanol Steam Reforming Rate Methanol Combustion Rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Golunski, Energy Environ Sci., 3, 1918 (2010).CrossRefGoogle Scholar
  2. 2.
    B. J. Bowers, J. L. Zhao, M. Ruffo, R. Khan, D. Dattatraya and N. Dushman, Int. J. Hydrogen Energy, 32, 1437 (2007).CrossRefGoogle Scholar
  3. 3.
    J. K. Lee and D. Park, Korean J. Chem. Eng., 15, 658 (1998).CrossRefGoogle Scholar
  4. 4.
    S. J. Kong, J. H. Jun and K. J. Yoon, Korean J. Chem. Eng., 21, 793 (2004).CrossRefGoogle Scholar
  5. 5.
    J. H. Park, D. Lee, H. C. Lee and E. D. Park, Korean J. Chem. Eng., 27, 1132 (2010).CrossRefGoogle Scholar
  6. 6.
    P. J. de Wild and M. J. F. M. Verhaak, Catal. Today, 60, 3 (2000).CrossRefGoogle Scholar
  7. 7.
    J. K. Lee, J. B. Ko and D. H. Kim, Appl. Catal. A Gen., 278, 25 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Iulianelli, P. Ribeirinha, A. Mendes and A. Basile, Renew. Sust. Energy Rev., 29, 355 (2014).CrossRefGoogle Scholar
  9. 9.
    M. L. Cubeiro and J. L. G. Fierro, J. Catal., 179, 150 (1998).CrossRefGoogle Scholar
  10. 10.
    Y. C. Lin, K. L. Hohn and S. M. Stagg-Williams, Appl. Catal. A. Gen., 327, 164 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R. M. Navarro and J. L. G. Fierro, J. Catal., 219, 389 (2003).CrossRefGoogle Scholar
  12. 12.
    J. R. Lattner and M. P. Harold, Catal. Today, 120, 78 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Y. Tang, J. Greenwood and P. Erickson, Int. J. Hydrogen Energy, 40, 8034 (2015).CrossRefGoogle Scholar
  14. 14.
    M. V. Twigg and M. S. Spencer, Top. Catal., 22, 191 (2003).CrossRefGoogle Scholar
  15. 15.
    G. J. Cheng, A. B. Yu and P. Zulli, Chem. Eng. Sci., 54, 4199 (1999).CrossRefGoogle Scholar
  16. 16.
    D. Wen and Y. Ding, Chem. Eng. Sci., 61, 3532 (2006).CrossRefGoogle Scholar
  17. 17.
    D. H. Kim and J. Lee, Stud. Surf. Sci., 159, 685 (2006).Google Scholar
  18. 18.
    H. Masuda and K. Fukuda, Science, 268, 1466 (1995).CrossRefGoogle Scholar
  19. 19.
    A. P. Li, F. Muller, A. Birner, K. Nielsh and U. Gosele, J. Vac. Sci. Technol. A, 17, 1428 (1999).CrossRefGoogle Scholar
  20. 20.
    W. Lee and S.-J. Park, Chem. Rev., 114, 7487 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Mehmood, A. Rauf, M. A. Rasheed, S. Saeed, J. I. Akhter, J. Ahmad and M. Aslam, Mater. Chem. Phys., 104, 306 (2007).CrossRefGoogle Scholar
  22. 22.
    G. Alcalá, P. Skeldon, G. Thompson, A. Mann, H. Habazaki and K. Shimizu, Nanotechnology, 13, 451 (2002).CrossRefGoogle Scholar
  23. 23.
    J. C. Ganley, K. L. Riechmann, E. G. Seebauer and R. I. Masel, J. Catal., 227, 26 (2004).CrossRefGoogle Scholar
  24. 24.
    L. Zhou, Y. Guo, M. Yagi, M. Sakurai and H. Kameyama, Int. J. Hydrogen Energy, 34, 844 (2009).CrossRefGoogle Scholar
  25. 25.
    L. Wang, T. P. Tran, D. V. Vo, M. Sakurai and H. Kameyama, Appl. Catal. A., 350, 150 (2009).CrossRefGoogle Scholar
  26. 26.
    E. Linga Reddy, J. Karuppiah, H. C. Lee and D. H. Kim, J. Power Sources, 268, 88 (2014).CrossRefGoogle Scholar
  27. 27.
    E. Linga Reddy, H. C. Lee and D. H. Kim, Int. J. Hydrogen Energy, 40, 2509 (2015).CrossRefGoogle Scholar
  28. 28.
    T. P. Tran, Y. Guo, J. Chen, L. Zhou, M. Sakurai and H. Kameyama, J. Chem. Eng. Japan, 41, 1042 (2008).CrossRefGoogle Scholar
  29. 29.
    J. Zhang, J. Kielbasa and D. L. Carroll, Mater. Chem. Phys., 122, 295 (2010).CrossRefGoogle Scholar
  30. 30.
    Y. Guo, L. Zhou and H. Kameyama, Chem. Eng. J., 168, 341 (2011).CrossRefGoogle Scholar
  31. 31.
    J. W. Evans, M. S. Wainwright, A. J. Bridgewater and D. J. Young, Appl. Catal., 7, 75 (1983).CrossRefGoogle Scholar
  32. 32.
    C. Fukuhara, H. Ohkura, Y. Kamata, Y. Murakami and A. Igarashi, Appl. Catal. A Gen., 273, 125 (2004).CrossRefGoogle Scholar
  33. 33.
    J. H. Kim, Y. S. Jang and D. H. Kim, Chem. Eng. J., 338, 752 (2018).CrossRefGoogle Scholar
  34. 34.
    A. J. Marchi, J. L. G. Fierro, J. Santamaría and A. Monzón, Appl. Catal. A Gen., 142, 375 (1996).CrossRefGoogle Scholar
  35. 35.
    T. J. Huang and S. L. Chren, Appl. Catal., 40, 43 (1988).CrossRefGoogle Scholar
  36. 36.
    S. Velu, K. Suzuki, M. Kapoor, F. Ohashi and T. Osaki, Appl. Catal. A Gen., 213, 47 (2001).CrossRefGoogle Scholar
  37. 37.
    L. A. Espinosa, R. M. Lago, M. A. Pena and J. L. G. Fierro, Top. Catal., 22, 245 (2003).CrossRefGoogle Scholar
  38. 38.
    M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino and M. Sisani, Appl. Catal. B Environ., 77, 46 (2007).CrossRefGoogle Scholar
  39. 39.
    J. Kim, J. Byeon, I. G. Seo, H. C. Lee, D. H. Kim and J. Lee, Korean J. Chem. Eng., 30, 790 (2013).CrossRefGoogle Scholar
  40. 40.
    T. L. Reitz, S. Ahmed, M. Krumpelt, R. Kumar and H. H. Kung, J. Mol. Catal. A Chem., 162, 275 (2000).CrossRefGoogle Scholar
  41. 41.
    J. Agrell, M. Boutonnet and J. L. G. Fierro, Appl. Catal. A Gen., 253, 213 (2003).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • JungHyeon Kim
    • 1
  • YoungShin Jang
    • 1
  • JaeChang Kim
    • 1
  • DongHyun Kim
    • 1
    Email author
  1. 1.Department of Chemical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations