Skip to main content
Log in

Techno-economic optimization of the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study proposes a simple economic model to optimize the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant. The optimization was conducted with five different types of working fluids, and an exergetic optimization was also done for comparison. In addition, sensitivity analysis was conducted to provide better insight into the behavior of the ORC system. The optimization results show that the optimum economic point and the optimum exergetic point are different, and a maximum profit can be achieved for the ORC system with economic optimization. Overall, in most cases, the profit is highest when the ORC system uses n-butane; however, R152a yields better profit when the ambient temperature is below 5 °C. In addition, all ORC systems show positive profit when the price of electricity is above 0.05 USD/kWh. For sensitivity analysis, two simulation experiments were conducted to observe the effect of changes in the feed gas temperature and the sales price of electricity on the optimization results. As a result, changes in the sale price of electricity are very critical, but changes in the feed gas temperature are not important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Sugiura and I. Naruse, J. Power Sources, 106, 51 (2002).

    Article  CAS  Google Scholar 

  2. R. Bove, A. Moreno and S. McPhail, International status of molten carbonate fuel cell (MCFC) technology, JRC Scientific and Technical Reports (2008).

    Google Scholar 

  3. S. J. McPhail, L. Leto, M. D. Pietra and V. Moreno, International status of molten carbonate fuel cells technology, ENEA (2015).

    Google Scholar 

  4. T. Yamamoto, T. Furuhata, N. Arai and K. Mori, Energy, 26, 239 (2001).

    Article  CAS  Google Scholar 

  5. N. B. Desai and S. Bandyopadhyay, Energy, 34, 1674 (2009).

    Article  CAS  Google Scholar 

  6. A. V. Akkaya and B. Sahin, Int. J. Energy Res., 33, 553 (2008).

    Article  CAS  Google Scholar 

  7. G. Angelino and P. C. di Paliano, Energy Conversion Engineering Conference and Exhibit, 2, 1400 (2000).

    Google Scholar 

  8. S.-W. Ji, S.-K. Park and T.-S. Kim, Transactions of the Korean Society of Mechanical Engineers B, 34, 907 (2010).

    Article  Google Scholar 

  9. A. H. Mamaghani, B. Najafi, A. Shirazi and F. Rinaldi, Energy, 82, 650 (2015).

    Article  CAS  Google Scholar 

  10. M. Ebrahimi and I. Moradpoor, Energy Convers. Manage., 116, 120 (2016).

    Article  Google Scholar 

  11. E. H. Wang, H. G. Zhang, B. Y. Fan, M. G. Ouyang, Y. Zhao and Q. H. Mu, Energy, 36, 3406 (2011).

    Article  CAS  Google Scholar 

  12. D. Sánchez, J. M. Muñoz de Escalona, B. Monje, R. Chacartegui and T. Sánchez, J. Power Sources, 196, 4355 (2011).

    Article  CAS  Google Scholar 

  13. A. Desideri, S. Gusev, M. van den Broek, V. Lemort and S. Quoilin, Energy, 97, 460 (2016).

    Article  CAS  Google Scholar 

  14. Z. Sun, S. Wang, F. Xu and W. He, Energy Procedia, 142, 1222 (2017).

    Article  CAS  Google Scholar 

  15. U. Lee and C. Han, Comput. Chem. Eng., 83, 21 (2015).

    Article  CAS  Google Scholar 

  16. W. Li, X. Feng, L. J. Yu and J. Xu, Appl. Therm. Eng., 31, 4014 (2011).

    Article  Google Scholar 

  17. J. Sarkar, Energy, 143, 141 (2018).

    Article  CAS  Google Scholar 

  18. E. Wang, H. Zhang, B. Fan and Y. Wu, J. Mech. Sci. Technol., 26, 2301 (2012).

    Article  Google Scholar 

  19. M. Wang, R. Khalilpour and A. Abbas, Energy Convers. Manage., 88, 947 (2014).

    Article  CAS  Google Scholar 

  20. S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef and V. Lemort, Renew. Sustain. Energy Rev., 22, 168 (2013).

    Article  CAS  Google Scholar 

  21. B. Patel, N. B. Desai, S. S. Kachhwaha, V. Jain and N. Hadia, J. Clean. Prod., 154, 26 (2017).

    Article  CAS  Google Scholar 

  22. M. Asim, M. K. H. Leung, Z. Shan, Y. Li, D. Y. C. Leung and M. Ni, Energy Procedia, 143, 192 (2017).

    Article  CAS  Google Scholar 

  23. G. Xu and G. Yu, J. Comput. Appl. Math., 333, 65 (2018).

    Article  Google Scholar 

  24. Y. Chen, L. Li, J. Xiao, Y. Yang, J. Liang and T. Li, Eng. Appl. Artif. Intell., 70, 159 (2018).

    Article  Google Scholar 

  25. D. Tian and Z. Shi, Swarm Evol. Comput., 41, 49 (2018).

    Article  Google Scholar 

  26. Z. L. Gaing, IEEE Trans. Energy Convers., 19, 384 (2004).

    Article  Google Scholar 

  27. K. Park, W. Won and D. Shin, J. Nat. Gas. Sci. Eng., 34, 958 (2016).

    Article  Google Scholar 

  28. A. Godio and A. Santilano, J. Appl. Geophysics, 148, 163 (2018).

    Article  Google Scholar 

  29. FuelCell Energy Solutions, http://www. all-energy. co. uk/__novadocuments/ 80806?v=635633926036100000 (accessed April 13, 2018).

  30. S. Aghahosseini and I. Dincer, Appl. Therm. Eng., 54, 35 (2013).

    Article  CAS  Google Scholar 

  31. N. Razaaly, G. Persico and P. M. Congedo, Energy Procedia, 129, 1149 (2017).

    Article  Google Scholar 

  32. S. Kwon, W. Won and J. Kim, Renewable Energy, 97, 177 (2016).

    Article  Google Scholar 

  33. S. Han, W. Won and J. Kim, Energy, 129, 86 (2017).

    Article  Google Scholar 

  34. W. Won, H. Kwon, J. Han and J. Kim, Renewable Energy, 103, 226 (2017).

    Article  CAS  Google Scholar 

  35. M. Kim, W. Won and J. Kim, Energy Convers. Manage., 143, 227 (2017).

    Article  Google Scholar 

  36. H. P. Loh, J. Lyons and C. W. White III, Process equipment cost estimation, DOE/NETL-2002/1169 (2002).

    Google Scholar 

  37. W. Won and C. T. Maravelias, Renewable Energy, 114, 357 (2017).

    Article  CAS  Google Scholar 

  38. A. I. Papadopoulos and P. Seferlis, Materials and process systems for CO2 capture: modeling, design, control, and integration, Wiley, New Jersey (2017).

    Book  Google Scholar 

  39. EIA-Electricity Data https://www. eia. gov/electricity/monthly/epm_ table_grapher. php?t=epmt_5_6_a (accessed March 3, 2018).

  40. W10_TH_ Price Forecasts for Electric Motor CNG Compressor at Gas Station Project–EMERALD AACE 2017–WEEKLY BLOG https://emeraldaace2017. com/2017/11/11/w10_th_-price-forecastsfor-electric-motor-cng-compressor-at-gas-station-project/ (accessed March 2, 2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyun Won.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K., Oh, SR. & Won, W. Techno-economic optimization of the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant. Korean J. Chem. Eng. 36, 345–355 (2019). https://doi.org/10.1007/s11814-018-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0210-x

Keywords

Navigation