Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 210–216 | Cite as

Effect of acidic properties of hierarchical HZSM-5 on the product distribution in methanol conversion to gasoline

  • Huiwen Huang
  • Hui Zhu
  • Qiang Zhang
  • Chunyi LiEmail author
Catalysis, Reaction Engineering


Hierarchical ZSM-5 zeolites with different SiO2/Al2O3 ratio but similar crystal size were directly synthesized by a single-template hydrothermal method, and the intrinsic effect of acidic properties on their catalytic performance in methanol to gasoline (MTG) reaction was comprehensively investigated. The physicochemical properties of HZSM-5 zeolites were characterized by XRD, N2 adsorption-desorption, SEM, NH3-TPD, FTIR, and TGA techniques. The results show good linear correlations between the yields of gasoline components and the relative content of Brønsted acid sites, and the hierarchical HZSM-5 zeolite with SiO2/Al2O3 molar ratio of 200 was firstly found to exhibit high reactivity, excellent product distribution and superior stability in MTG reaction, which can be attributed to its appropriate acid distribution with moderate Brønsted acid sites and proper B/L ratio, predominantly promoting gasoline range hydrocarbons production and inhibiting side reactions.


Methanol Gasoline Hierarchical HZSM-5 Zeolites Acidity Deactivation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_209_MOESM1_ESM.pdf (120 kb)
Effect of acidic properties of hierarchical HZSM-5 on the product distribution in methanol conversion to gasoline


  1. 1.
    C. D. Chang and A. J. Silvestri, J. Catal., 47, 249 (1997).CrossRefGoogle Scholar
  2. 2.
    M. Stöcker, Micropor. Mesopor. Mater., 29, 3 (1999).CrossRefGoogle Scholar
  3. 3.
    X. Meng, H. Huang, Q. Zhang, C. Li and Q. Cui, Korean J. Chem. Eng., 33, 1239 (2016).CrossRefGoogle Scholar
  4. 4.
    H. A. Zaidi and K. K. Pant, Catal. Today, 96, 155 (2004).CrossRefGoogle Scholar
  5. 5.
    H. A. Zaidi and K. K. Pant, Korean J. Chem. Eng., 22, 353 (2005).CrossRefGoogle Scholar
  6. 6.
    H. A. Zaidi and K. K. Pant, Ind. Eng. Chem. Res., 47, 2970 (2008).CrossRefGoogle Scholar
  7. 7.
    H. A. Zaidi and K. K. Pant, Korean J. Chem. Eng., 27, 1404 (2010).CrossRefGoogle Scholar
  8. 8.
    Z. Di, C. Yang, X. Jiao, J. Li, J. Wu and D. Zhang, Fuel, 104, 878 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Bjørgen, F. Joensen, M. S. Holm, U. Olsbye, K. P. Lillerud and S. Svelle, Appl. Catal. A, 345, 43 (2008).CrossRefGoogle Scholar
  10. 10.
    S. Fathi, M. Sohrabi and C. Falamaki, Fuel, 116, 529 (2014).CrossRefGoogle Scholar
  11. 11.
    S. M. Campbell, D. M. Bibby, J. M. Coddington and R. F. Howe, J. Catal., 161, 338 (1996).CrossRefGoogle Scholar
  12. 12.
    J. C. Groen, J. A. Moulijn and J. Pérez-Ramírez, Ind. Eng. Chem. Res., 46, 4193 (2007).CrossRefGoogle Scholar
  13. 13.
    J. C. Groen, J. A. Moulijn and J. Pérez-Ramírez, Micropor. Mesopor. Mater., 87, 153 (2005).CrossRefGoogle Scholar
  14. 14.
    H. Zhao, J. Ma, Q. Zhang, Z. Liu and R. Li, Ind. Eng. Chem. Res., 53, 13810 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki and R. Ryoo, Nature, 461, 246 (2009).CrossRefGoogle Scholar
  16. 16.
    K. Na, C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R. J. Messinger, B. F. Chmelka and R. Ryoo, Science, 333, 328 (2011).CrossRefGoogle Scholar
  17. 17.
    F. S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D. S. Su, R. Schlögl, T. Yokoi and T. Tatsumi, Angew. Chem., 118, 3162 (2006).CrossRefGoogle Scholar
  18. 18.
    Y. S. Tao, H. Kanoh and K. Kaneko, J. Am. Chem. Soc., 125, 6044 (2003).CrossRefGoogle Scholar
  19. 19.
    C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt and A. Carlsson, J. Am. Chem. Soc., 122, 7116 (2000).CrossRefGoogle Scholar
  20. 20.
    A. A. Rownaghi, F. Rezaei and J. Hedlund, Catal. Commun., 14, 37 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Rostamizadeh and A. Taeb, J. Ind. Eng. Chem., 27, 297 (2015).CrossRefGoogle Scholar
  22. 22.
    P. L. Benito, A. G. Gayubo, A. T. Aguayo, M. Olazar and J. Bilbao, J. Chem. Technol. Biot., 66, 183 (1996).CrossRefGoogle Scholar
  23. 23.
    J. C. Védrine, A. Auroux, V. Bolis, P. Dejaifve, C. Naccache, P. Wierzchowski, E. G. Derouane, J. B. Nagy, J. P. Gilson, J. H. C. van Hooff and P. Jan, J. Catal., 59, 248 (1979).CrossRefGoogle Scholar
  24. 24.
    I. Othman, R. M. Mohamed, I. A. Ibrahim and M. M. Mohamed, Appl. Catal. A, 299, 95 (2006).CrossRefGoogle Scholar
  25. 25.
    M. Firoozi, M. Baghalha and M. Asadi, Catal. Commun., 10, 1582 (2009).CrossRefGoogle Scholar
  26. 26.
    C. D. Chang, J. C. Kuo, W. H. Lang, S. M. Jacob, J. J. Wise and A. J. Silvestri, Ind. Eng. Chem. Process Des. Dev., 17, 255 (1978).CrossRefGoogle Scholar
  27. 27.
    M. Bjørgen, F. Joensen, K. P. Lillerud, U. Olsbye and S. Svelle, Catal. Today, 142, 90 (2009).CrossRefGoogle Scholar
  28. 28.
    M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumboc, S. Bordigac and U. Olsbye, J. Catal., 249, 195 (2007).CrossRefGoogle Scholar
  29. 29.
    S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K. P. Lillerud, S. Kolboe and M. Bjørgen, J. Am. Chem. Soc., 128, 14770 (2006).CrossRefGoogle Scholar
  30. 30.
    F. L. Bleken, T. V. Janssens, S. Svelle and U. Olsbye, Micropor. Mesopor. Mater., 164, 190 (2012).CrossRefGoogle Scholar
  31. 31.
    H. Schulz, Catal. Today, 154, 183 (2010).CrossRefGoogle Scholar
  32. 32.
    R. Barthos, T. Bánsági, T. S. Zakar and F. Solymosi, J. Catal., 247, 368 (2007).CrossRefGoogle Scholar
  33. 33.
    J. F. Liu, Y. Liu and L. F. Peng, J. Mol. Catal. A Chem., 280, 7 (2008).CrossRefGoogle Scholar
  34. 34.
    K. Barbera, F. Bonino, S. Bordiga, T. V. Janssens and P. Beato, J. Catal., 280, 196 (2011).CrossRefGoogle Scholar
  35. 35.
    U. V. Mentzel, K. T. Højholt, M. S. Holm, R. Fehrmann and P. Beato, Appl. Catal. A, 417, 290 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China)QingdaoChina

Personalised recommendations