Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 265–271 | Cite as

Development of sequential batch ozonated adsorptive membrane bioreactor to mitigate fouling with reduced energy consumption

  • Kavitha Nagarasampatti Palani
  • Darshini Saravanan
  • Kamalakannan Vasantha Palaniappan
  • Shanmuga Sundar
  • N. BalasubramanianEmail author
Separation Technology, Thermodynamics
  • 5 Downloads

Abstract

The present study focuses on overcoming the drawback as fouling in a membrane bioreactor (MBR), which can be alleviated by integrating advanced oxidation process, adsorption, and biofilm carriers in the activated sludge process. The optimal sludge retention time, carbon and ozone dosage was 150 minutes, 15 g and 1.5 Lmin-1, respectively. The percentage removal was observed to be above 90% for chemical oxygen demand and total organic carbon whereas for total dissolved solids was only 40% under transmembrane pressure of 20 kPa. The increase in permeate flux was 30% as compared to MBR. Sequential batch membrane bioreactor (SBMBR) showed 12% reduction in energy consumption for three hour operation at the flow rate of 0.72 L/h (transmembrane pressure 20 kPa), and it was confirmed in the SEM of carbon, membrane, UV, CV and HPLC also. The energy consumption required also confirms the less internal fouling via the extended backwash of four hours.

Keywords

Sequential Batch Reactor Biofilm Carriers Activated Carbon Ozonation Permeate Flux Activated Sludge Process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Tu, S. Zhang, L. Xu, M. Zhang and J. Zhu, Desalination, 261, 191 (2010).CrossRefGoogle Scholar
  2. 2.
    E. Vaiopoulou, T. M. Misiti and S. G. Pavlostathis, Bioresour. Technol., 179, 339 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Magara, M. Itoh and T. Morioka, Prog. Nucl. Energy, 29, 175 (1995).CrossRefGoogle Scholar
  4. 4.
    O. Disinfection, Technology Fact Sheet (1999).Google Scholar
  5. 5.
    W. Koros, Y. Ma and T. Shimidzu, J. Membr. Sci., 120, 149 (1996).CrossRefGoogle Scholar
  6. 6.
    E. R. Mortensen, T. Y. Cath, J. A. Brant, K. E. Dennett and A. E. Childress, J. Environ. Eng., 133, 1136 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Zuthi, H. Ngo and W. Guo, Bioresour. Technol., 122, 119 (2012).CrossRefGoogle Scholar
  8. 8.
    K. Ikehata, N. Jodeiri Naghashkar and M. Gamal El-Din, Ozone: Sci. Eng., 28, 353 (2006).CrossRefGoogle Scholar
  9. 9.
    L. Falletti and L. Conte, Ind. Eng. Chem. Res., 46, 6656 (2007).CrossRefGoogle Scholar
  10. 10.
    N. Czekalski, S. Imminger, E. Salhi, M. Veljkovic, K. Kleffel, D. Drissner, F. Hammes, H. Bürgmann and U. Von Gunten, Environ. Sci. Technol., 50, 11862 (2016).CrossRefGoogle Scholar
  11. 11.
    J. Wang, L. Wang, E. Cui and H. Lu, Korean J. Chem. Eng., 35, 1274 (2018).CrossRefGoogle Scholar
  12. 12.
    G. Langergraber, N. Fleischmann, F. Hofstaedter and A. Weingartner, Water Sci. Technol., 49, 9 (2004).CrossRefGoogle Scholar
  13. 13.
    N. Nordin, S. F. M. Amir and M. R. Othman, Int. J. Electrochem. Sci., 8, 11403 (2013).Google Scholar
  14. 14.
    X. Yang, Z. Zhou, M. N. Raju, X. Cai and F. Meng, J. Environ. Sci., 57, 150 (2017).CrossRefGoogle Scholar
  15. 15.
    F. Gashtasbi, R. J. Yengejeh and A. A. Babaei, Korean J. Chem. Eng., 35, 1726 (2018).CrossRefGoogle Scholar
  16. 16.
    D. Wang, M. Ji and C. Wang, Brazilian J. Chem. Eng., 31, 703 (2014).CrossRefGoogle Scholar
  17. 17.
    A. Szép, S. Kertész, Z. László, G. Szabó and C. Hodúr, Acta Technica Corviniensis-Bulletin of Engineering, 5, 25 (2012).Google Scholar
  18. 18.
    S. Hong, R. S. Faibish and M. Elimelech, J. Colloid Interface Sci., 196, 267 (1997).CrossRefGoogle Scholar
  19. 19.
    D. M. Kanani, X. Sun and R. Ghosh, J. Membr. Sci., 315, 1(2008).Google Scholar
  20. 20.
    C. Velasco, M. Ouammou, J. Calvo and A. Hernández, J. Colloid Interface Sci., 266 148 (2003).Google Scholar
  21. 21.
    H. Rezaei, F. Z. Ashtiani and A. Fouladitajar, Desalination, 274, 262 (2011).CrossRefGoogle Scholar
  22. 22.
    A. J. Massey, J. Schoepfer, P. A. Brough, J. Brueggen, P. Chène, Martin J. Drysdale, U. Pfaar, T. Radimerski, S. Ruetz, A. Schweitzer, M. Wood, C. G. Echeverria and M. R. Jensen, Mol. Cancer Ther., 9, 4 (2010).CrossRefGoogle Scholar
  23. 23.
    L. Nováková and M. Douša, Anal. Chem. Acta, 15, 199 (2017).CrossRefGoogle Scholar
  24. 24.
    V. Ghate, A. L. Leong, A. Kumar, W. SukBang, W. Zhou and H. G. Yuk, Food Microbiol., 48, 49 (2015).CrossRefGoogle Scholar
  25. 25.
    W. Chen, R. Zheng, P. D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X. Q. Yu and J. He, CA: Cancer Journal for Clinicians, 66, 115 (2016).Google Scholar
  26. 26.
    M. Yang, Y. Li, Y. Wei, J. Lü, D. Yu, J. Liu and Y. Fan, Huan jing ke xue=Huanjing kexue, Europe PMC, 36, 2203 (2015).Google Scholar
  27. 27.
    K. Lee, S. Lee, S. H. Lee, S.-R. Kim, H.-S. Oh, P.-K. Park, K.-H. Choo, Y.-W. Kim, J.-K. Lee and C.-H. Lee, Environ. Sci. Technol., 50, 10914 (2016).CrossRefGoogle Scholar
  28. 28.
    M. A. Indok Nurul Hasyimah and A. W. Mohammad, Ind. Eng. Chem. Res., 53, 15213 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Kavitha Nagarasampatti Palani
    • 1
  • Darshini Saravanan
    • 2
  • Kamalakannan Vasantha Palaniappan
    • 1
  • Shanmuga Sundar
    • 1
  • N. Balasubramanian
    • 1
    Email author
  1. 1.Department of Chemical Engineering, AC TechAnna UniversityChennaiIndia
  2. 2.Department of ChemistryWomen’s Christian CollegeChennaiIndia

Personalised recommendations