Advertisement

Development of surrogate model using CFD and deep neural networks to optimize gas detector layout

  • Kyeongwoo Jeon
  • Seeyub Yang
  • Dongju Kang
  • Jonggeol Na
  • Won Bo LeeEmail author
Research papers
  • 22 Downloads

Abstract

To reduce damage arising from accidents in chemical processing plants, detection of the incident must be rapid to mitigate the danger. In the case of the gas leaks, detectors are critical. To improve efficiency, leak detectors must be installed at locations after considering various factors like the characteristics of the workspace, processes involved, and potential consequences of the accidents. Thus, the consequences of potential accidents must be simulated. Among various approaches, computational fluid dynamics (CFD) is the most powerful tool to determine the consequences of gas leaks in industrial plants. However, the computational cost of CFD is large, making it prohibitively difficult and expensive to simulate many scenarios. Thus, a deep-neural-network-based surrogate model has been designed to mimic FLACS (FLame ACceleration Simulator), one of the most important programs in the modeling of gas leaks. Using the simulated results of a proposed surrogate model, a sensor allocation optimization problem was solved using mixed integer linear programming (MILP). The optimal solutions produced by the proposed surrogate model and FLACS were compared to verify the efficacy of the proposed surrogate model.

Keywords

Gas Detector Allocation Optimization Milp Computational Fluid Dynamics FLACS Artificial Neural Network Surrogate Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. R. Hanna, M. J. Brown, F. E. Camelli, S. T. Chan, W. J. Coirier, S. Kim, O. R. Hansen, A. H. Huber and R. M. Reynolds, Bull. Amer. Meteorol. Soc., 87, 1713 (2006).CrossRefGoogle Scholar
  2. 2.
    S. R. Hanna, O. R. Hansen, M. Ichard and D. Strimaitis, Atm. Environ., 43, 262 (2009).CrossRefGoogle Scholar
  3. 3.
    K. J. Long, F. J. Zajaczkowski, S. E. Haupt and L. J. Peltier, JCP, 4, 881 (2009).Google Scholar
  4. 4.
    Z. T. Xie, P. Hayden and C. R. Wood, Atm. Environ., 71, 64 (2013).CrossRefGoogle Scholar
  5. 5.
    D. Hamel, M. Chwastek, B. Farouk, K. Dandekar and M. Kam, Proceedings of the 2006 IEEE International Workshop on, 38 (2006).Google Scholar
  6. 6.
    J. Berry, W. E. Hart, C. A. Phillips, J. G. Uber and J.-P. Watson, J. Water Res. Plan. Man., 132, 218 (2006).CrossRefGoogle Scholar
  7. 7.
    S. W. Legg, A. Benavides-Serrano, J. D. Siirola, J.-P. Watson, S. Davis, A. Bratteteig and C. D. Laird, Comput. Chem. Eng., 47, 194 (2012).CrossRefGoogle Scholar
  8. 8.
    S. W. Legg, C. Wang, A. J. Benavides-Serrano and C. Laird, J. Loss Prev. Process. Ind., 26, 410 (2013).CrossRefGoogle Scholar
  9. 9.
    A. J. Benavides-Serrano, S. W. Legg, R. Vázquez-Román, M. Mannan and C. D. Laird, Ind. Eng. Chem. Res., 53, 5355 (2013).CrossRefGoogle Scholar
  10. 10.
    A. J. Benavides-Serrano, M. Mannan and C. D. Laird, AIChE J., 62, 2728 (2016).CrossRefGoogle Scholar
  11. 11.
    A. J. Benavides-Serrano, M. Mannan and C. D. Laird J. Loss Prev. Process. Ind., 35, 339 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Davis, O. R. Hansen, F. Gavelli and A. Bratteteig, Using CFD to Analyze Gas Detector Placement in Process Facilities. In: GexCon (2015).Google Scholar
  13. 13.
    R. Vázquez-Román, C. Díaz-Ovalle, E. Quiroz-Pérez and M. S. Mannan, J. Loss Prev. Process. Ind., 44, 633 (2016).CrossRefGoogle Scholar
  14. 14.
    E. G. Gomes, R. de Andrade Medronho and J. V. B. Alves, Gas Detector Placement in Petroleum Process Unit Using Computational Fluid Dynamics. International Journal of Modeling and Simulation for the Petroleum Industry, 8 (2014).Google Scholar
  15. 15.
    K. Wang, T. Chen, S. T. Kwa, Y. Ma and R. Lau, Comput. Chem. Eng., 69, 89 (2014).CrossRefGoogle Scholar
  16. 16.
    L. Margheri and P. Sagaut, J. Comput. Phys., 324, 137 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Na, K. Jeon and W. B. Lee, Chem. Eng. Sci., 181, 68 (2018).CrossRefGoogle Scholar
  18. 18.
    B. E. Launder and D. B. Spalding, Comput. Meth. in Appl. Mech. Eng., 3, 269 (1974).CrossRefGoogle Scholar
  19. 19.
    GexCon AS, FLACS v10. 7 Users Manual (2017).Google Scholar
  20. 20.
    O. R. Hansen, F. Gavelli, M. Ichard and S. G. Davis, J. Loss Prev. Process. Ind., 23, 857 (2010).CrossRefGoogle Scholar
  21. 21.
    I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press (2016).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Kyeongwoo Jeon
    • 1
  • Seeyub Yang
    • 1
  • Dongju Kang
    • 1
  • Jonggeol Na
    • 2
  • Won Bo Lee
    • 1
    Email author
  1. 1.School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea
  2. 2.Clean Energy Research CenterKorea Institute of Science and Technology (KIST)SeoulKorea

Personalised recommendations