Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 157–165 | Cite as

Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles

  • Raji Atchudan
  • Bong Geun Cha
  • Nasreena Lone
  • Jaeyun KimEmail author
  • Jin JooEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)


Well-graphitized carbon nanotubes (CNTs) were grown by using monodisperse spherical mesoporous silica encapsulating single iron oxide (Fe3O4) nanoparticles (MSEINPs) as catalytic templates by chemical vapor deposition (CVD) and using acetylene as carbon source. The catalytic templates were synthesized by a sol-gel method. The MSEINPs exhibited better activity and selectivity in CNT synthesis than bare Fe3O4 catalysts. The synthesized multiwall carbon nanotubes (MWCNTs) were analyzed by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The carbon deposits are rich in MWCNTs, as confirmed by FESEM and TGA. The wall thickness of the MWCNTs is controlled primarily by the size of the spherical mesoporous silica layer encapsulating the Fe3O4 NPs, while the inner diameter of the CNTs is determined by the size of the Fe3O4 NPs at the center of the MSEINPs. The average diameter of the MWCNTs increased significantly with increases in the growth temperature and acetylene flow rate. The analytical results show that the CNTs prepared on MSEINPs are well graphitized with a narrow size distribution in thickness, and straight and longer tubes are obtained without major defects as compared to the CNTs grown on bare Fe3O4 NPs.


Carbon Nanotubes Mesoporous Silicas Iron Oxide Nanoparticles CVD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_200_MOESM1_ESM.pdf (370 kb)
Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles


  1. 1.
    S. Iijima, Nature, 354, 56 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Iijima and T. Ichihashi, Nature, 363, 603 (1993).CrossRefGoogle Scholar
  3. 3.
    A. A. Koval’chuk, A. N. Shchegolikhin, V. G. Shevchenko, P. M. Nedorezova, A. N. Klyamkina and A. M. Aladyshev, Macromolecules, 41, 3149 (2008).CrossRefGoogle Scholar
  4. 4.
    M. M. Rahman, R. Suleiman and H.D. Kim, Korean J. Chem. Eng., 34, 2480 (2017).CrossRefGoogle Scholar
  5. 5.
    W.-J. Lee, S. Jeong, H. Lee, B.-J. Kim, K.-H. An, Y.-K. Park and S.-C. Jung, Korean J. Chem. Eng., 34, 2993 (2017).CrossRefGoogle Scholar
  6. 6.
    C. Liu and H. M. Cheng, Mater. Today, 16, 19 (2013).CrossRefGoogle Scholar
  7. 7.
    M. F. L. De Volder, S. H. Tawfick, R. H. Baughman and A. John Hart, Science, 339, 535 (2013).CrossRefGoogle Scholar
  8. 8.
    N. Azizi, M. Arzani, H.R. Mahdavi and T. Mohammadi, Korean J. Chem. Eng., 34, 2459 (2017).CrossRefGoogle Scholar
  9. 9.
    L. Yang, Y. An, B. Dai, X. Guo, Z. Liu and B. Peng, Korean J. Chem. Eng., 33, 2271 (2016).Google Scholar
  10. 10.
    Z. Shadike, M.H. Cao, F. Ding, L. Sang and Z.W. Fu, Chem. Commun., 51, 10486 (2015).CrossRefGoogle Scholar
  11. 11.
    R. Atchudan and A. Pandurangan, Micropor. Mesopor. Mater., 167, 162 (2013).CrossRefGoogle Scholar
  12. 12.
    S.U. Rather, Korean J. Chem. Eng., 33, 1511 (2016).CrossRefGoogle Scholar
  13. 13.
    D. S. Bethune, C.H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature, 363, 605 (1993).CrossRefGoogle Scholar
  14. 14.
    T. Guo, P. Nikolaev, A. Thess, D.T. Colbert and R. E. Smalley, Chem. Phys. Lett., 243, 49 (1995).CrossRefGoogle Scholar
  15. 15.
    V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx and J. Van Landuyt, Chem. Phys. Lett., 223, 329 (1994).CrossRefGoogle Scholar
  16. 16.
    J. Balamurugan, A. Pandurangan, N.H. Kim and J.H. Lee, Nanoscale, 7, 679 (2015).CrossRefGoogle Scholar
  17. 17.
    R. Atchudan, J. Joo and A. Pandurangan, Mater. Res. Bull., 48, 2205 (2013).CrossRefGoogle Scholar
  18. 18.
    F. Zheng, L. Liang, Y. Gao, J. H. Sukamto and C. L. Aardahl, Nano Lett., 2, 729 (2002).CrossRefGoogle Scholar
  19. 19.
    R. Atchudan, A. Pandurangan and J. Joo, Micropor. Mesopor. Mater., 175, 161 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J.Y. Kim, J. H. Park, N.M. Hwang and T. Hyeon, Nature Mater., 3, 891 (2004).CrossRefGoogle Scholar
  21. 21.
    J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon and T. Hyeon, Angew. Chem. Int. Ed., 47, 8438 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Mohapatra, A. Mitra, D. Bahadur and M. Aslam, CrystEngComm, 15, 524 (2013).CrossRefGoogle Scholar
  23. 23.
    X. Huang, A. Schmucker, J. Dyke, S. M. Hall, J. Retrum, B. Stein, N. Remmes, D.V. Baxter, B. Dragnea and L. M. Bronstein, J. Mater. Chem., 19, 4231 (2009).CrossRefGoogle Scholar
  24. 24.
    P. Ramesh, T. Okazaki, R. Taniguchi, J. Kimura, T. Sugai, K. Sato, Y. Ozeki and H. Shinohara, J. Phys. Chem. B, 109, 1141 (2005).CrossRefGoogle Scholar
  25. 25.
    Y. Xiao, T. Wang, Y. Cao, X. Wang, Y. Zhang, Y. Liu and Q. Huo, Dalton Trans., 44, 4355 (2015).CrossRefGoogle Scholar
  26. 26.
    R. Atchudan, A. Pandurangan and T. Somanathan, J. Mol. Catal A: Chem., 309, 146 (2009).CrossRefGoogle Scholar
  27. 27.
    T.R. Pauly and T. J. Pinnavaia, Chem. Mater., 13, 987 (2001).CrossRefGoogle Scholar
  28. 28.
    C.Y. Chen, H. X. Li and M. E. Davis, Micropor. Mater., 2, 17 (1993).CrossRefGoogle Scholar
  29. 29.
    M.L. Occelli, S. Biz, A. Auroux and G. J. Ray, Micropor. Mesopor. Mater., 26, 193 (1998).CrossRefGoogle Scholar
  30. 30.
    N. Halonen, K. Kordás, G. Tóth, T. Mustonen, J. Mäklin, J. Vähäkangas, P.M. Ajayan and R. Vajtai, J. Phys. Chem. C, 112, 6723 (2008).CrossRefGoogle Scholar
  31. 31.
    A.C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000).CrossRefGoogle Scholar
  32. 32.
    Z. Iatridi and C. Tsitsilianis, Soft Matter, 9, 185 (2013).CrossRefGoogle Scholar
  33. 33.
    A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J. P. Wicksted and A. Hirsch, Nat. Mater., 1, 190 (2002).CrossRefGoogle Scholar
  34. 34.
    R. Zhang and X. Wang, Chem. Mater., 19, 976 (2007).CrossRefGoogle Scholar
  35. 35.
    R. Atchudan, S. Perumal, D. Karthikeyan, A. Pandurangan and Y.R. Lee, Micropor. Mesopor. Mater., 215, 123 (2015).CrossRefGoogle Scholar
  36. 36.
    W. Li, L. S. Zhang, Q. Wang, Y. Yu, Z. Chen, C.Y. Cao and W. G. Song, J. Mater. Chem., 22, 15342 (2012).CrossRefGoogle Scholar
  37. 37.
    R. Atchudan and A. Pandurangan, J. Mol. Catal A: Chem., 355, 75 (2012).CrossRefGoogle Scholar
  38. 38.
    S. Vetrivel, J. S. Do, M.Y. Cheng and B. J. Hwang, J. Phys. Chem. C, 111, 16211 (2007).CrossRefGoogle Scholar
  39. 39.
    M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo and S. Goyanes, Appl. Sur. Sci., 254, 251 (2007).CrossRefGoogle Scholar
  40. 40.
    K. Chajara, C. H. Andersson, J. Lu, E. Widenkvist and H. Grennberg, New J. Chem., 34, 2275 (2010).CrossRefGoogle Scholar
  41. 41.
    S. Scaccia, M. Carewska and P. P. Prosini, Thermochim. Acta, 435, 209 (2005).CrossRefGoogle Scholar
  42. 42.
    R. Atchudan, S. Perumal, T.N. J. I. Edison and Y.R. Lee, RSC Adv., 5, 93364 (2015).CrossRefGoogle Scholar
  43. 43.
    J. Sui, C. Zhang, D. Hong, J. Li, Q. Cheng, Z. Lib and W. Cai, J. Mater. Chem., 22, 13674 (2012).CrossRefGoogle Scholar
  44. 44.
    J.C. Juan, Y. Jiang, X. Meng, W. Cao, M.A. Yarmo and J.C. Zhang, Mater. Res. Bull., 42, 1278 (2007).CrossRefGoogle Scholar
  45. 45.
    D. Yuan, X. Yuan, W. Zou, F. Zeng, X. Huang and S. Zhou, J. Mater. Chem., 22, 17820 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryKyungpook National UniversityDaeguKorea
  2. 2.School of Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations