Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 305–311 | Cite as

Effect of substrate off-orientation on the characteristics of GaInP/AlGaInP single heterojunction solar cells

  • Junghwan KimEmail author
  • Hyun-Beom Shin
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 12 Downloads

Abstract

The effects of GaAs substrate off-orientation on GaInP/AlGaInP heterojunction solar cells were investigated. The performances of solar cells fabricated on 2° and 10° off GaAs substrates were compared. The short circuit current densities were 10.44 mA/cm2 for the 10° off sample, 7.15 mA/cm2 and 7.41 mA/cm2 for the 2° off samples, which showed 30% higher short-circuit current density for 10° off samples. Also, 30% higher external quantum efficiencies and smooth surface morphology were observed in the solar cell fabricated on the 10° off GaAs substrate. Secondary ion mass spectrometry depth profiles showed that the solar cells on 2° off substrates had a 20-times higher oxygen concentration than the solar cells on 10° off GaAs substrate in the n-GaAs/GaAs buffer layer. The 30% reduction for the solar cells on 2° substrates in short circuit current density (Jsc) was attributed to the higher oxygen concentration of the 2° off samples than the 10° off samples. I-V characteristics comparison between different front contact grid patterns was also performed for optimization of grid contacts. A 0.47 V bandgap-voltage offset, one of the device performance figures of merit to compare PV cells with different materials, was obtained.

Keywords

Heterojunction Solar Cell Substrate Off-orientation Impurity Incorporation GaInP/AlGaInP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Suzuki, Y. Nishikawa, M. Ishikawa and Y. Kokubun, J. Cryst. Growth, 113, 127 (1991).CrossRefGoogle Scholar
  2. 2.
    M. Kondo, C. Anayama, N. Okada, H. Sekiguchi, K. Domen and T. Tanahashi, J. Appl. Phys., 76, 914 (1994).CrossRefGoogle Scholar
  3. 3.
    D. C. Radulescu, G.W. Wicks, W. J. Schaff, A.R. Calawa and L. F. Eastman, J. Appl. Phys., 63, 5115 (1988).CrossRefGoogle Scholar
  4. 4.
    T. Suzuki, A. Gomyo and S. Iijima, J. Cryst. Growth, 99, 60 (1990).CrossRefGoogle Scholar
  5. 5.
    R. M. France, J. F. Geisz, I. Garcia, M.A. Steiner, W. E. McMahon, D. J. Friedman, T. E. Moriarty, C. Osterwald, J. Scott Ward, A. Duda, M. Young and W. J. Olavarria, IEEE J. Photovoltaics, 5, 432 (2015).CrossRefGoogle Scholar
  6. 6.
    C.T. Sah, R.N. Noyce and W. Shockley, Proceedings of the IRE, 45, 1228 (1957).CrossRefGoogle Scholar
  7. 7.
    K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama and S. Okamoto, IEEE J. Photovoltaics, 4, 1433 (2014).CrossRefGoogle Scholar
  8. 8.
    B. Zhang, D. H. Lee, H. Chae, C. Park and S. M. Cho, Korean J. Chem Eng., 27, 999 (2010).CrossRefGoogle Scholar
  9. 9.
    H. Kim, S. Nam, J. Jeong, S. Lee, J. Seo, H. Han and Y. Kim, Korean J. Chem Eng., 31, 1095 (2014).CrossRefGoogle Scholar
  10. 10.
    H. H. Cho, C. H. Cho, H. Kang, H. Yu, J. H. Oh and B. J. Kim, Korean J. Chem Eng., 32, 261 (2014).CrossRefGoogle Scholar
  11. 11.
    I. H. Yoo, S. S. Kalanur, K. Eom, B. Ahn, I. S. Cho, H. K. Yu, H. Jeon and H. Seo, Korean J. Chem Eng., 34, 3200 (2017).CrossRefGoogle Scholar
  12. 12.
    V. H.T. Pham, N.T. N. Truong, T. K. Trinh, S. H. Lee and C. Park, Korean J. Chem Eng., 33, 678 (2016).CrossRefGoogle Scholar
  13. 13.
    D. L. Feucht, J. Vac. Sci. Technol., 14, 57 (1977).CrossRefGoogle Scholar
  14. 14.
    J.F. Geisz, M.A. Steiner, I. García, S.R. Kurtz and D. J. Friedman, Appl. Phys. Lett., 103, 041118 (2013).CrossRefGoogle Scholar
  15. 15.
    T. Masuda, S. Tomasulo, J.R. Lang and M. L. Lee, J. Appl. Phys., 117, 094504 (2015).CrossRefGoogle Scholar
  16. 16.
    M. Moser, C. Geng, E. Lach, I. Queisser, F. Scholz, H. Schweizer and A. Dörnen, J. Cryst. Growth, 124, 333 (1992).CrossRefGoogle Scholar
  17. 17.
    N. Chand, A. S. Jordan and S.N.G. Chu, Appl. Phys. Lett., 59, 3270 (1991).CrossRefGoogle Scholar
  18. 18.
    M. Kondo, N. Okada, K. Domen, K. Sugiura, C. Anayama and T. Tanahashi, J. Electron. Mater., 23, 355 (1994).CrossRefGoogle Scholar
  19. 19.
    N. Xiang, A. Tukiainen and M. Pessa, J. Electron. Mater., 13, 549 (2002).CrossRefGoogle Scholar
  20. 20.
    H.W. Yu, E.Y. Chang, H.Q. Nguyen, J.T. Chang, C. C. Chung, C. I. Kuo, Y. Y. Wong and W. C. Wang, Appl. Phys. Lett., 97, 2008 (2010).Google Scholar
  21. 21.
    M. Hata, H. Takata, T. Yako, N. Fukuhara, T. Maeda and Y. Uemura, J. Cryst. Growth, 124, 427 (1992).CrossRefGoogle Scholar
  22. 22.
    B.A. Philips, A.G. Norman, T.Y. Seong, S. Mahajan, G.R. Booker, M. Skowronski, J.P. Harbison and V.G. Keramidas, J. Cryst. Growth, 140, 249 (1994).CrossRefGoogle Scholar
  23. 23.
    A. Gomyo, T. Suzuki and S. Iijima, Phys. Rev. Lett., 60, 2645 (1988).CrossRefGoogle Scholar
  24. 24.
    M. Zafar, J.-Y. Yun and D.-H. Kim, Korean J. Chem Eng., 34, 1504 (2017).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Department of Energy and Mineral Resources EngineeringSejong UniversitySeoulKorea
  2. 2.Korea Advanced Nano Fabrication CenterSuwon, Gyeonggi-doKorea

Personalised recommendations