Advertisement

Nanostructured colloidal quantum dots for efficient electroluminescence devices

  • Wan Ki Bae
  • Jaehoon Lim
Invited Review Paper
  • 41 Downloads

Abstract

The exceptional quality of light generated from colloidal quantum dots has attracted continued interest from the display and lighting industry, leading to the development of commercial quantum dot displays based on the photoluminescence down-conversion process. Beyond this technical level, quantum dots are being introduced as emissive materials in electroluminescence devices (or quantum dot-based light-emitting diodes), which boast high internal quantum efficiency of up to 100%, energy efficiency, thinness, and flexibility. In this review, we revisit various milestone studies regarding the core/shell heterostructures of colloidal quantum dots from the viewpoint of electroluminescence materials. Development of nanostructured colloidal quantum dots advanced from core/shell heterostructure, core/thick shell formulation, and delicate control of confinement potential shape has demonstrated close correlation of the photophysical properties of quantum dots with the performance of electroluminescence device, which provided useful guidelines on the heterostructured quantum dots for mitigating or eliminating efficiency limiting phenomena in quantum dot light emitting diodes. To enable practical and high performance quantum dot-based electroluminescence devices in the future, integration of design concepts on the heterostructures with environmentally benign systems will be crucial.

Keywords

Colloidal Quantum Dots Nanocrystals Core/Shell Heterostructures Electroluminescence Light Emitting Diodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee and K. Char, Opt. Mater. Express, 2, 594 (2012).CrossRefGoogle Scholar
  2. 2.
    J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli and V. I. Klimov, Chem. Rev., 116, 10513 (2016).CrossRefPubMedGoogle Scholar
  3. 3.
    J. Chen, V. Hardev, J. Hartlove, J. Hofler and E. Lee, SID Int. Symp. Dig. Tec., 43, 895 (2012).CrossRefGoogle Scholar
  4. 4.
    M.A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996).CrossRefGoogle Scholar
  5. 5.
    B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B, 101, 9463 (1997).CrossRefGoogle Scholar
  6. 6.
    X. Peng, M. C. Schlamp, A.V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 119, 7019 (1997).CrossRefGoogle Scholar
  7. 7.
    D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 1, 207 (2001).CrossRefGoogle Scholar
  8. 8.
    D.V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson and H. Weller, J. Phys. Chem. B, 108, 18826 (2004).CrossRefGoogle Scholar
  9. 9.
    P.O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi and V. Bulovic, Phys. Rev. B, 78, 085434 (2008).CrossRefGoogle Scholar
  10. 10.
    W.K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J.M. Pietryga and V. I. Klimov, Nat. Commun., 4, 2661 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    D. Bozyigit, O. Yarema and V. Wood, Adv. Funct. Mater., 23, 3024 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Shirasaki, G. J. Supran, W.A. Tisdale and V. Bulovic, Phys. Rev. Lett., 110, 217403 (2013).CrossRefPubMedGoogle Scholar
  13. 13.
    B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan and P.T. Kazlas, Nat. Photonics, 7, 407 (2013).CrossRefGoogle Scholar
  14. 14.
    X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang and X. Peng, Nature, 515, 96 (2014).CrossRefPubMedGoogle Scholar
  15. 15.
    K.P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarz and P.H. Holloway, Nanoscale, 9, 14451 (2017).CrossRefPubMedGoogle Scholar
  16. 16.
    L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang and X. Liu, ACS Appl. Mater. Interfaces, 9, 38755 (2017).CrossRefPubMedGoogle Scholar
  17. 17.
    Y. Fu, W. Jiang, D. Kim, W. Lee and H. Chae, ACS Appl. Mater. Interfaces, 10, 17295 (2018).CrossRefPubMedGoogle Scholar
  18. 18.
    M.K. Choi, J. Yang, T. Hyeon and D.-H. Kim, npj Flexible Electronics, 2, 10 (2018).CrossRefGoogle Scholar
  19. 19.
    C.-Y. Han and H. Yang, J. Korean Ceram. Soc., 54, 449 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic, Nat. Photonics, 7, 13 (2012).CrossRefGoogle Scholar
  21. 21.
    V. L. Colvin, M.C. Schlamp and A. P. Alivisatos, Nature, 370, 354 (1994).CrossRefGoogle Scholar
  22. 22.
    P.O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic, Nano Lett., 9, 2532 (2009).CrossRefPubMedGoogle Scholar
  23. 23.
    J. Lim, B. G. Jeong, M. Park, J. K. Kim, J.M. Pietryga, Y.-S. Park, V. I. Klimov, C. Lee, D.C. Lee and W.K. Bae, Adv. Mater., 26, 8034 (2014).CrossRefPubMedGoogle Scholar
  24. 24.
    X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu and E. H. Sargent, Nat. Photonics, 12, 159 (2018).CrossRefGoogle Scholar
  25. 25.
    H. Shen, W. Cao, N. T. Shewmon, C. Yang, L.S. Li and J. Xue, Nano Lett., 15, 1211 (2015).CrossRefPubMedGoogle Scholar
  26. 26.
    J.W. Stouwdam and R.A.J. Janssen, J. Mater. Chem., 18, 1889 (2008).CrossRefGoogle Scholar
  27. 27.
    K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J.Y. Han, B.-K. Kim, B.L. Choi and J.M. Kim, Nat. Photon, 3, 341 (2009).CrossRefGoogle Scholar
  28. 28.
    T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J.W. Kim, D.H. Kim, J.-Y. Kwon, G. Amaratunga, S.Y. Lee, B.L. Choi, Y. Kuk, J.M. Kim and K. Kim, Nat. Photon, 5, 176 (2011).CrossRefGoogle Scholar
  29. 29.
    J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, S. Lee and C. Lee, Nano Lett., 12, 2362 (2012).CrossRefPubMedGoogle Scholar
  30. 30.
    S. Jun, J. Lee and E. Jang, ACS Nano, 7, 1472 (2013).CrossRefPubMedGoogle Scholar
  31. 31.
    H. Woo, J. Lim, Y. Lee, J. Sung, H. Shin, J. M. Oh, M. Choi, H. Yoon, W.K. Bae and K. Char, J. Mater. Chem. C, 1, 1983 (2013).CrossRefGoogle Scholar
  32. 32.
    R. Meerheim, M. Furno, S. Hofmann, B. Lussem and K. Leo, Appl. Phys. Lett., 97, 253305 (2010).CrossRefGoogle Scholar
  33. 33.
    A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris and M. Bawendi, Phys. Rev. B, 54, 4843 (1996).CrossRefGoogle Scholar
  34. 34.
    T.B. S.A. Crooker, Appl. Phys. Lett., 82, 2793 (2003).CrossRefGoogle Scholar
  35. 35.
    D. J. Norris, A. L. Efros, M. Rosen and M. G. Bawendi, Phys. Rev. B, 53, 16347 (1996).CrossRefGoogle Scholar
  36. 36.
    J.K. L.M. Kuno, B.O. Dabbousi, F.V. Mikulec and M.G. Bawendi, J. Chem. Phys., 106, 9869 (1997).CrossRefGoogle Scholar
  37. 37.
    M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros and M. Rosen, Phys. Rev. Lett., 75, 3728 (1995).CrossRefPubMedGoogle Scholar
  38. 38.
    L. Biadala, B. Siebers, Y. Beyazit, M.D. Tessier, D. Dupont, Z. Hens, D.R. Yakovlev and M. Bayer, ACS Nano, 10, 3356 (2016).CrossRefPubMedGoogle Scholar
  39. 39.
    A. Brodu, M.V. Ballottin, J. Buhot, E. J. van Harten, D. Dupont, A. La Porta, P.T. Prins, M.D. Tessier, M. Versteegh, V. Zwiller, S. Bals, Z. Hens, F.T. Rabouw, P. C. M. Christianen, C. de Mello Donega and D. Vanmaekelbergh, ACS Photonics, 5, 3353 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    M.A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J.G. Michopoulos, S.G. Lambrakos, N. Bernstein, J.L. Lyons, T. Stöferle, R.F. Mahrt, M.V. Kovalenko, D. J. Norris, G. Rainò and A. L. Efros, Nature, 553, 189 (2018).CrossRefPubMedGoogle Scholar
  41. 41.
    C. Adachi, M. A. Baldo, M. E. Thompson and S.R. Forrest, J. Appl. Phys., 90, 5048 (2001).CrossRefGoogle Scholar
  42. 42.
    Y. Ma, H. Zhang, J. Shen and C. Che, Synth. Met., 94, 245 (1998).CrossRefGoogle Scholar
  43. 43.
    M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson and S.R. Forrest, Nature, 395, 151 (1998).CrossRefGoogle Scholar
  44. 44.
    K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photon, 6, 253 (2012).CrossRefGoogle Scholar
  45. 45.
    A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki and C. Adachi, Appl. Phys. Lett., 98, 083302 (2011).CrossRefGoogle Scholar
  46. 46.
    D. Yokoyama, Y. Setoguchi, A. Sakaguchi, M. Suzuki and C. Adachi, Adv. Funct. Mater., 20, 386 (2010).CrossRefGoogle Scholar
  47. 47.
    L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M.V. Kovalenko, Nano Lett., 15, 3692 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler, J. Phys. Chem., 100, 8927 (1996).CrossRefGoogle Scholar
  49. 49.
    L. Qu and X. Peng, J. Am. Chem. Soc., 124, 2049 (2002).CrossRefPubMedGoogle Scholar
  50. 50.
    P. Reiss, J. Bleuse and A. Pron, Nano Lett., 2, 781 (2002).CrossRefGoogle Scholar
  51. 51.
    J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T.D. Mishima, M. B. Johnson and X. Peng, J. Am. Chem. Soc., 125, 12567 (2003).CrossRefPubMedGoogle Scholar
  52. 52.
    R. Xie, U. Kolb, J. Li, T. Basché and A. Mews, J. Am. Chem. Soc., 127, 7480 (2005).CrossRefPubMedGoogle Scholar
  53. 53.
    J. McBride, J. Treadway, L.C. Feldman, S. J. Pennycook and S. J. Rosenthal, Nano Lett., 6, 1496 (2006).CrossRefPubMedGoogle Scholar
  54. 54.
    L. Li and P. Reiss, J. Am. Chem. Soc., 130, 11588 (2008).CrossRefPubMedGoogle Scholar
  55. 55.
    J.M. Pietryga, D. J. Werder, D. J. Williams, J.L. Casson, R.D. Schaller, V. I. Klimov and J. A. Hollingsworth, J. Am. Chem. Soc., 130, 4879 (2008).CrossRefPubMedGoogle Scholar
  56. 56.
    W.K. Bae, K. Char, H. Hur and S. Lee, Chem. Mater., 20, 531 (2008).CrossRefGoogle Scholar
  57. 57.
    S.-W. Kim, J.P. Zimmer, S. Ohnishi, J.B. Tracy, J.V. Frangioni and M. G. Bawendi, J. Am. Chem. Soc., 127, 10526 (2005).CrossRefPubMedGoogle Scholar
  58. 58.
    J. Lim, W.K. Bae, D. Lee, M.K. Nam, J. Jung, C. Lee, K. Char and S. Lee, Chem. Mater., 23, 4459 (2011).CrossRefGoogle Scholar
  59. 59.
    S. Kim, T. Kim, M. Kang, S. K. Kwak, T.W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim and S.-W. Kim, J. Am. Chem. Soc., 134, 3804 (2012).CrossRefPubMedGoogle Scholar
  60. 60.
    J. Lim, M. Park, W.K. Bae, D. Lee, S. Lee, C. Lee and K. Char, ACS Nano, 7, 9019 (2013).CrossRefPubMedGoogle Scholar
  61. 61.
    E. Jang, S. Jun, H. Jang, J. Lim, B. Kim and Y. Kim, Adv. Mater., 22, 3076 (2010).CrossRefPubMedGoogle Scholar
  62. 62.
    H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend and T.-W. Lee, Science, 350, 1222 (2015).CrossRefPubMedGoogle Scholar
  63. 63.
    H. Huang, M. I. Bodnarchuk, S.V. Kershaw, M.V. Kovalenko and A. L. Rogach, ACS Energy Lett., 2, 2071 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    M.V. Kovalenko, L. Protesescu and M. I. Bodnarchuk, Science, 358, 745 (2017).CrossRefPubMedGoogle Scholar
  65. 65.
    A. Swarnkar, V. K. Ravi and A. Nag, ACS Energy Lett., 2, 1089 (2017).CrossRefGoogle Scholar
  66. 66.
    V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A.R. S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H. J. Snaith and A. Petrozza, Nat. Commun., 5, 3586 (2014).CrossRefPubMedGoogle Scholar
  67. 67.
    T. Chiba, K. Hoshi, Y.-J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido, ACS Appl. Mater. Interfaces, 9, 18054 (2017).CrossRefPubMedGoogle Scholar
  68. 68.
    J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, Adv. Mater., 29, 1603885 (2017).CrossRefGoogle Scholar
  69. 69.
    K. Hoshi, T. Chiba, J. Sato, Y. Hayashi, Y. Takahashi, H. Ebe, S. Ohisa and J. Kido, ACS Appl. Mater. Interfaces, 10, 24607 (2018).CrossRefPubMedGoogle Scholar
  70. 70.
    F. Yan, J. Xing, G. Xing, L. Quan, S.T. Tan, J. Zhao, R. Su, L. Zhang, S. Chen, Y. Zhao, A. Huan, E. H. Sargent, Q. Xiong and H.V. Demir, Nano Lett., 18, 3157 (2018).CrossRefPubMedGoogle Scholar
  71. 71.
    B.N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth and H. Htoon, Nano Lett., 12, 331 (2012).CrossRefPubMedGoogle Scholar
  72. 72.
    V. I. Klimov, Annu. Rev. Condens. Matter Phys., 5, 285 (2014).CrossRefGoogle Scholar
  73. 73.
    W.K. Bae, L. A. Padilha, Y.-S. Park, H. McDaniel, I. Robel, J. M. Pietryga and V. I. Klimov, ACS Nano, 7, 3411 (2013).CrossRefPubMedGoogle Scholar
  74. 74.
    Y.-S. Park, J. Lim, N. S. Makarov and V. I. Klimov, Nano Lett., 17, 5607 (2017).CrossRefPubMedGoogle Scholar
  75. 75.
    C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A.V. Rodina, A. L. Efros, D.R. Yakovlev, F. Liu, M. Bayer, G. Camps, L. Biadala, S. Buil, X. Quelin and J. P. Hermier, Nat. Nanotechnol., 8, 206 (2013).CrossRefPubMedGoogle Scholar
  76. 76.
    P.T.K. Chin, C. de Mello Donegá, S. S. van Bavel, S. C. J. Meskers, N. A. J. M. Sommerdijk and R.A. J. Janssen, J. Am. Chem. Soc., 129, 14880 (2007).CrossRefPubMedGoogle Scholar
  77. 77.
    D. Oron, M. Kazes and U. Banin, Phys. Rev. B, 75, 035330 (2007).CrossRefGoogle Scholar
  78. 78.
    S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder and V. I. Klimov, J. Am. Chem. Soc., 129, 11708 (2007).CrossRefPubMedGoogle Scholar
  79. 79.
    Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D.A. Bussian, V. I. Klimov and J. A. Hollingsworth, J. Am. Chem. Soc., 130, 5026 (2008).CrossRefPubMedGoogle Scholar
  80. 80.
    B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier and B. Dubertret, Nat. Mater., 7, 659 (2008).CrossRefPubMedGoogle Scholar
  81. 81.
    G. E. Cragg and A.L. Efros, Nano Lett., 10, 313 (2010).CrossRefPubMedGoogle Scholar
  82. 82.
    J. I. Climente, J. L. Movilla and J. Planelles, Small, 8, 754 (2012).CrossRefPubMedGoogle Scholar
  83. 83.
    F. García-Santamaría, S. Brovelli, R. Viswanatha, J.A. Hollingsworth, H. Htoon, S. A. Crooker and V. I. Klimov, Nano Lett., 11, 687 (2011).CrossRefPubMedGoogle Scholar
  84. 84.
    Y. S. Park, A.V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J.A. Hollingsworth, V. I. Klimov and H. Htoon, Phys. Rev. Lett., 106, 187401 (2011).CrossRefPubMedGoogle Scholar
  85. 85.
    V. I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire and A. Piryatinski, Nature, 447, 441 (2007).CrossRefPubMedGoogle Scholar
  86. 86.
    A. Piryatinski, S.A. Ivanov, S. Tretiak and V. I. Klimov, Nano Lett., 7, 108 (2007).CrossRefPubMedGoogle Scholar
  87. 87.
    J. Lim, Y.-S. Park and V. I. Klimov, Nat. Mater., 17, 42 (2017).CrossRefPubMedGoogle Scholar
  88. 88.
    J. Lim, Y.-S. Park, K. Wu, H. J. Yun and V. I. Klimov, Nano Lett., 18, 6645 (2018).CrossRefPubMedGoogle Scholar
  89. 89.
    T. E. Parliament, Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, <https://doi.org/eur-lex.europa.eu/legal-content/EN/TXT/?qid=1399998664957&uri=CELEX:02011L0065-20140129>(2011).Google Scholar
  90. 90.
    T. Kim, S.W. Kim, M. Kang and S.-W. Kim, J. Phys. Chem. Lett., 3, 214 (2011).CrossRefGoogle Scholar
  91. 91.
    Y.W. Cao and U. Banin, Angew. Chem. Int. Ed., 38, 3692 (1999).CrossRefGoogle Scholar
  92. 92.
    Y. Cao and U. Banin, J. Am. Chem. Soc., 122, 9692 (2000).CrossRefGoogle Scholar
  93. 93.
    S.-W. Kim, J.P. Zimmer, S. Ohnishi, J.B. Tracy, J.V. Frangioni and M. G. Bawendi, J. Am. Chem. Soc., 127, 10526 (2005).CrossRefPubMedGoogle Scholar
  94. 94.
    Z. Kang, Y. Liu, C. H.A. Tsang, D.D.D. Ma, X. Fan, N.-B. Wong and S.-T. Lee, Adv. Mater., 21, 661 (2009).CrossRefGoogle Scholar
  95. 95.
    J. Zou, R.K. Baldwin, K. A. Pettigrew and S.M. Kauzlarich, Nano Lett., 4, 1181 (2004).CrossRefGoogle Scholar
  96. 96.
    D. S. English, L. E. Pell, Z. Yu, P. F. Barbara and B. A. Korgel, Nano Lett., 2, 681 (2002).CrossRefGoogle Scholar
  97. 97.
    J.D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston and B. A. Korgel, J. Am. Chem. Soc., 123, 3743 (2001).CrossRefPubMedGoogle Scholar
  98. 98.
    H. McDaniel, A.Y. Koposov, S. Draguta, N.S. Makarov, J.M. Pietryga and V. I. Klimov, J. Phys. Chem. C, 118, 16987 (2014).CrossRefGoogle Scholar
  99. 99.
    E. Witt and J. Kolny-Olesiak, Chem. Eur. J., 19, 9746 (2013).CrossRefPubMedGoogle Scholar
  100. 100.
    H. McDaniel, N. Fuke, J. M. Pietryga and V. I. Klimov, J. Phys. Chem. Lett., 4, 355 (2013).CrossRefPubMedGoogle Scholar
  101. 101.
    L. Li, T. J. Daou, I. Texier, T. T. Kim Chi, N.Q. Liem and P. Reiss, Chem. Mater., 21, 2422 (2009).CrossRefGoogle Scholar
  102. 102.
    J. Park and S.-W. Kim, J. Mater. Chem., 21, 3745 (2011).CrossRefGoogle Scholar
  103. 103.
    B. Chen, H. Zhong, W. Zhang, Z. a. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang and B. Zou, Adv. Funct. Mater., 22, 2081 (2012).CrossRefGoogle Scholar
  104. 104.
    P. Ramasamy, N. Kim, Y.-S. Kang, O. Ramirez and J.-S. Lee, Chem. Mater., 29, 6893 (2017).CrossRefGoogle Scholar
  105. 105.
    J. H. Chang, P. Park, H. Jung, B. G. Jeong, D. Hahm, G. Nagamine, J. Ko, J. Cho, L.A. Padilha, D.C. Lee, C. Lee, K. Char and W. K. Bae, ACS Nano, 12, 10231 (2018).CrossRefPubMedGoogle Scholar
  106. 106.
    N. Oh, S. Nam, Y. Zhai, K. Deshpande, P. Trefonas and M. Shim, Nat. Commun., 5, 3642 (2014).CrossRefPubMedGoogle Scholar
  107. 107.
    S. Nam, N. Oh, Y. Zhai and M. Shim, ACS Nano, 9, 878 (2015).CrossRefPubMedGoogle Scholar
  108. 108.
    A. Rizzo, C. Nobile, M. Mazzeo, M.D. Giorgi, A. Fiore, L. Carbone, R. Cingolani, L. Manna and G. Gigli, ACS Nano, 3, 1506 (2009).CrossRefPubMedGoogle Scholar
  109. 109.
    R. A. M. Hikmet, P.T. K. Chin, D.V. Talapin and H. Weller, Adv. Mater., 17, 1436 (2005).CrossRefGoogle Scholar
  110. 110.
    D.-E. Yoon, W.D. Kim, D. Kim, D. Lee, S. Koh, W.K. Bae and D.C. Lee, J. Phys. Chem. C, 121, 24837 (2017).CrossRefGoogle Scholar
  111. 111.
    P.C. Sercel and A. L. Efros, Nano Lett., 18, 4061 (2018).CrossRefPubMedGoogle Scholar
  112. 112.
    L.T. Kunneman, J.M. Schins, S. Pedetti, H. Heuclin, F.C. Grozema, A. J. Houtepen, B. Dubertret and L.D. A. Siebbeles, Nano Lett., 14, 7039 (2014).CrossRefPubMedGoogle Scholar
  113. 113.
    L. Biadala, F. Liu, M.D. Tessier, D.R. Yakovlev, B. Dubertret and M. Bayer, Nano Lett., 14, 1134 (2014).CrossRefPubMedGoogle Scholar
  114. 114.
    S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret and A. L. Efros, Nat. Mater., 10, 936 (2011).CrossRefPubMedGoogle Scholar
  115. 115.
    H. Htoon, J. A. Hollingsworth, R. Dickerson and V. I. Klimov, Phys. Rev. Lett., 91, 227401 (2003).CrossRefPubMedGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan UniversitySuwonKorea
  2. 2.Department of Chemical Engineering & Department of Energy System ResearchAjou UniversitySuwonKorea

Personalised recommendations