Advertisement

Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater

  • Xinling Xie
  • Jie Huang
  • Youquan ZhangEmail author
  • Zhangfa Tong
  • Anping Liao
  • Xingkui Guo
  • Zuzeng QinEmail author
  • Zhanhu GuoEmail author
Article
  • 17 Downloads

Abstract

Aminated cassava residue magnetic microspheres (ACRPM) were synthesized via an inverse emulsion method by using chemically modified cassava residue as a crude material, and acrylic acid (AA), acrylamide (AM), and methyl methacrylate (MMA) as monomers and a polyethylene glycol/methanol system (PEG/MeOH) as the porogen. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and vibrating sample magnetometry (VSM) were used to characterize the ACRPM. The results indicated that amino groups were grafted to the cassava residue magnetic microspheres, and the Fe3O4 nanoparticles were encapsulated in the microspheres. After porogen was added, the particle size of the ACRPM decreased from 16.5 μm to 150 nm with a pore volume of 0.05510m3/g, and the specific surface area of the ACRPM increased from 3.02 to 12.34m2/g. The ACRPM were superparamagnetic, and the saturation magnetization was 9.8 emu/g. The maximum adsorption capacity of Pb(II) on the ACRPM was 390mg/g. The ACRPM exhibited a large specific surface area and provided many adsorption sites for metal ion adsorption, which favored a high adsorption capacity. Additionally, the Pb(II) adsorption process was fitted to pseudo-second-order kinetic and Langmuir isothermal adsorption models. This suggests that the Pb(II) adsorption process was dominated by a chemical reaction process and that chemisorption was the rate-controlling step during the Pb(II) removal process. In addition, the adsorbent exhibited good stability after six consecutive reuses.

Keywords

Aminated Cassava Residue Magnetic Microspheres Inverse Emulsion Polyethylene Glycol/Methanol System Pb(II) Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_190_MOESM1_ESM.pdf (76 kb)
Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater

References

  1. 1.
    E. Da'na, Micropor. Mesopor. Mater., 247, 145 (2017).CrossRefGoogle Scholar
  2. 2.
    G. Tepanosyan, L. Sahakyan, O. Belyaeva, N. Maghakyan and A. Saghatelyan, Chemosphere, 184, 1230 (2017).CrossRefGoogle Scholar
  3. 3.
    J. Ma, Y. Liu, O. Ali, Y. Wei, S. Zhang, Y. Zhang, T. Cai, C. Liu and S. Luo, J. Hazard. Mater., 344, 1034 (2018).CrossRefGoogle Scholar
  4. 4.
    T. A. Kurniawan, G.Y. Chan, W. H. Lo and S. Babel, Sci. Total Environ., 366, 409 (2006).CrossRefGoogle Scholar
  5. 5.
    Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E.K. Wujcik and Z. Guo, Poly, 128, 12 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Huang, Y. Cao, Q. Shao, X. Peng and Z. Guo, Ind. Eng. Chem. Res., 56, 10689 (2017).CrossRefGoogle Scholar
  7. 7.
    U.K. Garg, M. P. Kaur, V. K. Garg and D. Sud, J. Hazard. Mater., 140, 60 (2007).CrossRefGoogle Scholar
  8. 8.
    M. I. Shariful, T. Sepehr, M. Mehrali, B.C. Ang and M.A. Amalina, J. Appl. Polym. Sci., 135, 45851 (2018).CrossRefGoogle Scholar
  9. 9.
    Z. Xu, G. Gao, B. Pan, W. Zhang and L. Lv, Water Res., 87, 378 (2015).CrossRefGoogle Scholar
  10. 10.
    I. Petrinic, J. Korenak, D. Povodnik and C. Hélix-Nielsen, J. Clean. Prod., 101, 292 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Altmann, A. S. Ruhl, F. Zietzschmann and M. Jekel, Water Res., 55, 185 (2014).CrossRefGoogle Scholar
  12. 12.
    M.A. Shaker and H. M. albishri, Chemosphere, 111, 587 (2014).CrossRefGoogle Scholar
  13. 13.
    N. Li, F. Fu, J. Lu, Z. Ding, B. Tang and J. Pang, Environ. Pollut., 220, 1376 (2017).CrossRefGoogle Scholar
  14. 14.
    L. Lv, N. Chen, C. Feng, J. Zhang and M. Li, RSC Adv., 7, 27992 (2017).CrossRefGoogle Scholar
  15. 15.
    H.-C. Dang, X. Yuan, Q. Xiao, W.-X. Xiao, Y.-K. Luo, X.-L. Wang, F. Song and Y.-Z. Wang, J. Environ. Chem. Eng., 5, 4505 (2017).CrossRefGoogle Scholar
  16. 16.
    N. M. Noor, R. Othman, N.M. Mubarak and E. C. Abdullah, J. Taiwan Inst. Chem. Eng., 78, 168 (2017).CrossRefGoogle Scholar
  17. 17.
    W. Park, A.C. Gordon, S. Cho, X. Huang, K.R. Harris, A.C. Larson and D.-H. Kim, ACS Appl. Mater. Inter., 9, 13819 (2017).CrossRefGoogle Scholar
  18. 18.
    N. Rodkate and M. Rutnakornpituk, Carbohyd. Polym., 151, 251 (2016).CrossRefGoogle Scholar
  19. 19.
    X. Zhang, N. Zhang, C. Du, P. Guan, X. Gao, C. Wang, Y. Du, S. Ding and X. Hu, Chem. Eng. J., 317, 988 (2017).CrossRefGoogle Scholar
  20. 20.
    Z. Hu, Q. Shao, M. G. Moloney, X. Xu, D. Zhang, J. Li, C. Zhang and Y. Huang, Macromolecules, 50, 1422 (2017).CrossRefGoogle Scholar
  21. 21.
    W. Zhu, W. Ma, C. Li, J. Pan and X. Dai, Chem. Eng. J., 276, 249 (2015).CrossRefGoogle Scholar
  22. 22.
    J. Liu, H.-T. Wu, J.-f. Lu, X.-y. Wen, J. Kan and C.-h. Jin, Chem. Eng. J., 262, 803 (2015).CrossRefGoogle Scholar
  23. 23.
    J. Xie, G. Zhong, C. Cai, C. Chen and X. Chen, Talanta, 169, 98 (2017).CrossRefGoogle Scholar
  24. 24.
    J. Huang, P. Su, L. Zhou and Y. Yang, Colloids Surf., A, 490, 241 (2016).CrossRefGoogle Scholar
  25. 25.
    P. Pingmuanglek, N. Jakrawatana and S. H. Gheewala, J. Clean. Prod., 162, 1075 (2017).CrossRefGoogle Scholar
  26. 26.
    H. Jiang, Y. Qin, S. I. Gadow and Y.-Y. Li, Int. J. Hydrogen Energy, 42, 2868 (2017).CrossRefGoogle Scholar
  27. 27.
    H. Lu, C. Lv, M. Zhang, S. Liu, J. Liu and F. Lian, Energy Convers. Manage., 132, 251 (2017).CrossRefGoogle Scholar
  28. 28.
    J. Cheng, J. Zhang, R. Lin, J. Liu, L. Zhang and K. Cen, Bioresour. Technol., 228, 348 (2017).CrossRefGoogle Scholar
  29. 29.
    X. Xie, H. Xiong, Y. Zhang, Z. Tong, A. Liao and Z. Qin, J. Environ. Chem. Eng., 5, 2800 (2017).CrossRefGoogle Scholar
  30. 30.
    A.R. Garcia, C. Lacko, C. Snyder, A. C. Bohórquez, C. E. Schmidt and C. Rinaldi, Colloids Surf. Physicochem. Eng. Aspects, 529, 119 (2017).CrossRefGoogle Scholar
  31. 31.
    Z. Guo, J. Fan, J. Zhang, Y. Kang, H. Liu, L. Jiang and C. Zhang, J. Taiwan Inst. Chem. Eng., 58, 290 (2016).CrossRefGoogle Scholar
  32. 32.
    A. Hajlane, H. Kaddami and R. Joffe, Ind. Crop. Prod., 100, 41 (2017).CrossRefGoogle Scholar
  33. 33.
    D. Morillo Martín, M. Faccini, M.A. García and D. Amantia, J. Environ. Chem. Eng., 6, 236 (2018).CrossRefGoogle Scholar
  34. 34.
    Q. Lin, J. Pan, Q. Lin and Q. Liu, J. Hazard. Mater., 263, 517 (2013).CrossRefGoogle Scholar
  35. 35.
    L. Lu, J. Li, D. H. L. Ng, P. Yang, P. Song and M. Zuo, J. Ind. Eng. Chem., 46, 315 (2017).CrossRefGoogle Scholar
  36. 36.
    W. Wang, T. Liang, H. Bai, W. Dong and X. Liu, Carbohydr. Polym., 179, 297 (2018).CrossRefGoogle Scholar
  37. 37.
    T. Zhai, Q. Zheng, Z. Cai, H. Xia and S. Gong, Carbohydr. Polym., 148, 300 (2016).CrossRefGoogle Scholar
  38. 38.
    L. Wang and D.E. Giammar, J. Colloid Interface Sci., 448, 331 (2015).CrossRefGoogle Scholar
  39. 39.
    X. Liu, M. Liu and L. Zhang, J. Colloid Interface Sci., 511, 135 (2018).CrossRefGoogle Scholar
  40. 40.
    D. Kolodynska, J. Krukowska-Bak, J. Kazmierczak-Razna and R. Pietrzak, Micropor. Mesopor. Mater., 244, 127 (2017).CrossRefGoogle Scholar
  41. 41.
    N. A. Fakhre and B.M. Ibrahim, J. Hazard. Mater., 343, 324 (2018).CrossRefGoogle Scholar
  42. 42.
    X. Ma, X. Liu, D. P. Anderson and P.R. Chang, Food Chem., 181, 133 (2015).CrossRefGoogle Scholar
  43. 43.
    Q. Liu, F. Li, H. Lu, M. Li, J. Liu, S. Zhang, Q. Sun and L. Xiong, Food Chem., 242, 256 (2018).CrossRefGoogle Scholar
  44. 44.
    N. Yin, K. Wang, Y. A. Xia and Z. Li, Desalination, 430, 120 (2018).CrossRefGoogle Scholar
  45. 45.
    T. Liu, X. Han, Y. Wang, L. Yan, B. Du, Q. Wei and D. Wei, J. Colloid Interface Sci., 508, 405 (2017).CrossRefGoogle Scholar
  46. 46.
    Q. Yuan, Y. Chi, N. Yu, Y. Zhao, W. Yan, X. Li and B. Dong, Mater. Res. Bull., 49, 279 (2014).CrossRefGoogle Scholar
  47. 47.
    H. L. Fan, S. F. Zhou, W. Z. Jiao, G. S. Qi and Y. Z. Liu, Carbohyd. Polym., 174, 1192 (2017).CrossRefGoogle Scholar
  48. 48.
    Q. Hu, Z. Xiao, X. Xiong, G. Zhou and X. Guan, J. Environ. Sci., 27, 207 (2015).CrossRefGoogle Scholar
  49. 49.
    J.N. Putro, S. P. Santoso, S. Ismadji and Y.-H. Ju, Micropor. Mesopor. Mater., 246, 166 (2017).CrossRefGoogle Scholar
  50. 50.
    A.A. Yakout, R. H. El-Sokkary, M. A. Shreadah and O. G. Abdel Hamid, Carbohyd. Polym., 172, 20 (2017).CrossRefGoogle Scholar
  51. 51.
    T.W. Cheng, M. L. Lee, M. S. Ko, T. H. Ueng and S. F. Yang, Appl. Clay Sci., 56, 90 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi UniversityNanningChina
  2. 2.Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular EngineeringUniversity of Tennessee, KnoxvilleTennesseeUSA
  3. 3.Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education InstitutesGuangxi University for NationalitiesNanningChina
  4. 4.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations