One-pot preparation of LiFePO4/C composites
- 10 Downloads
Abstract
A convenient one-pot method, called high-temperature high-energy mechanical force (HTHEMF), was successfully developed for the preparation of LiFePO4/C composites. Upon the combination of high-temperature with high-energy mechanical force, the whole synthesis process of this method is very simple and only involves two steps, the precursor preparation and the calcination step. The results of XRD, SEM, BET and electrochemical performance tests indicated that after calcination at 600 °C for 9 h, the LiFePO4/C composites have the best properties. The discharge capacity of the composites was 150.3mA h g-1 at 0.1 C. After 30 cycles test, the reversible capacity was 147 mA h g-1 and the retention ratio to the initial capacity was 97.8%. The results indicated that LiFePO4/C composites with good properties can be obtained by one-pot HTHEMF method.
Keywords
LiFePO4/C Composites Cathode Material High-temperature High-energy Mechanical Force One-potPreview
Unable to display preview. Download preview PDF.
References
- 1.A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).CrossRefGoogle Scholar
- 2.Y. K. Chen, Chinese J. Power Sources, 27, 487 (2003).Google Scholar
- 3.M. S. Whittingham, Chem. Rev., 114, 11414 (2014).CrossRefGoogle Scholar
- 4.G. Zubi, R. Dufo–López, M. Carvalho and G. Pasaoglu, Renew. Sustain. Energy Rev., 89, 292 (2018).CrossRefGoogle Scholar
- 5.Q. Gong, Y. S. He, Y. Yang, X. Z. Liao and Z. F. Ma, J. Solid State Electrochem., 16, 1383 (2012).CrossRefGoogle Scholar
- 6.G. X. Wang, R. Liu, M. Chen, H. C. Kang, H. Kang, X. Li and K. Yan, Korean J. Chem. Eng., 29, 1094 (2012).CrossRefGoogle Scholar
- 7.Z. H. Wang, L. X. Yuan, W. X. Zhang and Y. H. Huang, J. Alloys Compd., 25, 532 (2012).Google Scholar
- 8.X. L. Xu, C. Y. Qi, Z. D. Hao, H. Wang and J. T. Jiu, Nano–Micro Lett., 10(1), 1 (2018).Google Scholar
- 9.F. F. Pan and W. L. Wang, J. Solid State Electrochem., 16, 1423 (2012).CrossRefGoogle Scholar
- 10.Y. Yin, M. Gao, H. Pan, L. Shen, X. Ye, Y. Liu, P. S. Fedkiw and X. Zhang, J. Power Sources, 199, 256 (2012).CrossRefGoogle Scholar
- 11.N. Angulakshmi, Sabu Thomas, K. S. Nahm, A. M. Stephan and R. N. Elizabeth, Ionics, 17, 407 (2011).CrossRefGoogle Scholar
- 12.X. H. Liu and Z. W. Zhao, Powder Technol., 197, 309 (2010).CrossRefGoogle Scholar
- 13.Y. Wang, B. Sun, J. S. Park and H. S. Kim, J. Alloys Compd., 509, 1040 (2011).CrossRefGoogle Scholar
- 14.F. Xu, J. D. Zou, Q. Zhao, K. P. Yan, Y. Sun, Y. J. Peng and G. X. Wang, J. Chengdu. Uni., 37(1), 84 (2018).Google Scholar
- 15.H. Raj and A. Sil, Ionics, 24, 2543 (2018)CrossRefGoogle Scholar
- 16.Y. Y. Liu, C. B. Cao and J. Li, Electrochim. Acta, 55, 3921 (2010).CrossRefGoogle Scholar
- 17.T. V. S. L. Satyavani, A. Srinivas Kumar and P. S. V. Subba Rao, Eng. Sci. Technol. an Int. J., 19, 178 (2016).CrossRefGoogle Scholar
- 18.L. Y. Jia and Z. B. Shao, J. Chin. J. Mater. Res., 24, 213 (2010).Google Scholar
- 19.D. Chen, H. G. Yan and P. Y. Huang, Chin. J. Rare Metal., 27, 293 (2003).Google Scholar
- 20.H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, J. Metall. Trans., 21A, 2333 (1990).CrossRefGoogle Scholar
- 21.X. B. Chen, Z. B. Shao and Y. W. Tian, J. Mater. Technol., 26, 67 (2011).CrossRefGoogle Scholar
- 22.P. Q. Jia, Z. B. Shao and K. R. Liu, Mater. Lett., 130, 71 (2014).CrossRefGoogle Scholar
- 23.S. Scaccia and M. Carewska, Mater. Res. Bull., 38, 1155 (2003).CrossRefGoogle Scholar
- 24.S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro and N. Kumagai, Electrochim. Acta, 49, 4213 (2004).CrossRefGoogle Scholar
- 25.M. Konarova and I. Taniguchi, Powder Technol., 191, 111 (2009).CrossRefGoogle Scholar
- 26.S. H. Luo, Z. L. Tang, J. B. Lu and Z. T. Zhang, Ceram. Int., 34, 1349 (2008).CrossRefGoogle Scholar
- 27.Y. H. Wang, R. Mei and X. M. Yang, Ceram. Int., 40, 8439 (2014).CrossRefGoogle Scholar
- 28.E. M. Jin, B. Jin, D. K. Jun, K. H. Park, H. B. Gu and K. W. Kim, J. Power Sources, 178, 801 (2008).CrossRefGoogle Scholar