Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 12, pp 2474–2479 | Cite as

Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma

  • Su-Hyeon Ji
  • Woo-Sung Jang
  • Jeong-Wook Son
  • Do-Heyoung KimEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 25 Downloads

Abstract

Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel (Ni(EtCp)2) and O2 plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, O2 plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of 100–325 °C and a growth rate of 0.037±0.002 nm per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.

Keywords

Plasma-enhanced Atomic Layer Deposition Atomic Layer Deposition Nickel Oxide Thin Film Bis(ethylcyclopentadienyl)-nickel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Rai, J. W. Yoon, H. M. Jeong, S. J. Hwang, C. H. Kwak and J. H. Lee, Nanoscale, 6, 8292 (2014).CrossRefGoogle Scholar
  2. 2.
    J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang and Y. Zhang, J. Mater. Chem., 22, 20038 (2012).CrossRefGoogle Scholar
  3. 3.
    R. Betancur, M. Maymo, X. Elias, L. T. Vuong and J. Martorell, Solar Energy Mater. Solar Cells, 95, 735 (2011).CrossRefGoogle Scholar
  4. 4.
    A. A. Al-Ghamdi, W. E. Mahmoud, S. J. Yaghmour and F. M. Al-Marzouki, J. Alloys Compd., 486, 9 (2009).CrossRefGoogle Scholar
  5. 5.
    Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan and S. Yang, Angew. Chem., 126, 12779 (2014).CrossRefGoogle Scholar
  6. 6.
    K. O. Ukoba, A. C. Eloka-Eboka and F. L. Inambao, Renew. Sust. Energy Rev., 82, 2900 (2018).CrossRefGoogle Scholar
  7. 7.
    J. H. Kim, H. M. Lee, D. W. Kang, K. M. Lee and C. K. Kim, Korean J. Chem. Eng., 33, 9, 2711 (2016).CrossRefGoogle Scholar
  8. 8.
    D. Barreca and C. Massignan, Chem. Mater., 13(2), 588 (2001).CrossRefGoogle Scholar
  9. 9.
    P. Yang, X. Tong, G. Wang, Z. Gao, X. Guo and Y. Qin, ACS Appl. Mater. Interfaces, 7, 4772 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Wang, X. Peng, L. Yu, G. Wan, S. Lin and Y. Qin, J. Mater. Chem. A, 3, 2734 (2015).CrossRefGoogle Scholar
  11. 11.
    D. H. Kim, Y. J. Kim, Y. S. Song, B. T. Lee, J. H. Kim, S. Suh and R. Gordon, J. Electrochem. Soc., 150(10), C740 (2003).Google Scholar
  12. 12.
    T. S. Yang, W. Cho, M. Kim, K. S. An, T. M. Chung, C. G. Kim and Y. Kim, J. Vac. Sci. Technol., A, 23(4), 1238 (2005).CrossRefGoogle Scholar
  13. 13.
    E. Lindahl, M. Ottosson and J. O. Carlsson, Chem. Vap. Deposition, 15, 186 (2009).CrossRefGoogle Scholar
  14. 14.
    L. Yu, G. Wang, G. Wan, G. Wang, S. Lin, X. Li, K. Wang, Z. Bai and Y. Xiang, Dalton Trans., 45, 13779 (2016).CrossRefGoogle Scholar
  15. 15.
    G. Wang, X. Peng, L. Yu, G. Wan, S. Lin and Y. Qin, J. Mater. Chem. A, 3, 2734 (2015).CrossRefGoogle Scholar
  16. 16.
    H. L. Lu, G. Scarel, C. Wiemer, M. Perego, S. Spiga, M. Fanciulli and G. Pavia, J. Electrochem. Soc., 155(10), H807 (2008).Google Scholar
  17. 17.
    H. L. Lu, G. Scarel, X. L. Li and M. Fanciulli, J. Cryst. Growth, 310, 5464 (2008).CrossRefGoogle Scholar
  18. 18.
    M. K. S. Barr, L. Assaud, Y. Wu, C. Laffon, P. Parent, J, Bachmann and L. Santinacci, Electrochim. Acta, 179, 504 (2015).CrossRefGoogle Scholar
  19. 19.
    P. Motamedi, K. Bosnick, K. Cui, K. Cadien and J. D. Hogan, ACS Appl. Mater. Interfaces, 9, 24722 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. W. Kim and D. H. Kim, Korean J. Chem. Eng., 29(7), 969 (2012).CrossRefGoogle Scholar
  21. 21.
    A. G. Hufnagel, A. K. Henß, R. Hoffmann, O. E. O. Zeman, S. Häringer, D. F. Rohlfing and T. Bein, Adv. Mater. Interfaces, 5, 1701531 (2018).CrossRefGoogle Scholar
  22. 22.
    D. Malwala and P. Gopinath, Environ. Sci.: Nano, 2, 78 (2015).Google Scholar
  23. 23.
    R. K. Ramachandran, J. Dendooven and C. Detavernier, J. Mater. Chem. A, 2, 10662 (2014).CrossRefGoogle Scholar
  24. 24.
    J. H. Lee and J. H. Moon, Korean J. Chem. Eng., 34(12), 3195 (2017).CrossRefGoogle Scholar
  25. 25.
    N. R. Chodankar, S. H. Ji and D. H. Kim, J. Taiwan Inst. Chem. Eng., 80, 503 (2017).CrossRefGoogle Scholar
  26. 26.
    M. Zafar, J. Y. Yun and D. H. Kim, Korean J. Chem. Eng., 35(2), 567 (2018).CrossRefGoogle Scholar
  27. 27.
    X. Chen, E. Pomerantseva, P. Banerjee, K. Gregorczyk, R. Ghodssi and G. Rubloff, Chem. Mater., 24, 1255 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Su-Hyeon Ji
    • 1
  • Woo-Sung Jang
    • 1
  • Jeong-Wook Son
    • 1
  • Do-Heyoung Kim
    • 1
    Email author
  1. 1.School of Chemical EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations