Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 109–114 | Cite as

Modified simulated moving bed chromatography with two pumps for sugar separation

  • Jae-Ryong Song
  • Hyukmin Park
  • Jin-Il Kim
  • Ngoc Lan Mai
  • Yoon-Mo Koo
Separation Technology, Thermodynamics


A modified SMB system composed of two pumps was developed for the separation of L-ribose and L-arabinose from its binary mixture. In two-pump SMB operation, the flow rates required for separation in every column zones and product ports are identical to those in conventional SMB equipped with four pumps and are controlled by appropriate operation of valves during a cycle of switching time. The purity, yield and enrichment of sugars obtained by two-pump SMB separation were comparable to that of conventional SMB. The two-pump SMB system is therefore considered to be more economically efficient than conventional SMB by reducing the cost for SMB installation and pump operation.


Two-pump SMB Chromatography Sugar Separation Energy Efficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_175_MOESM1_ESM.pdf (248 kb)
Modified simulated moving bed chromatography with two pumps for sugar separation


  1. 1.
    D. B. Broughton and C. G. Gerhold, Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets, U. S. Patent 2,985,589 (1961).Google Scholar
  2. 2.
    M. Juza, M. Mazzotti and M. Morbidelli, Trends Biotechnol., 18, 108 (2000).CrossRefGoogle Scholar
  3. 3.
    O. Ludemann-Hombourger, R. M. Nicoud and M. Bailly, Sep. Sci. Technol., 35, 1829 (2000).CrossRefGoogle Scholar
  4. 4.
    H. Schramm, M. Kaspereit, A. Kienle and A. Seidel-Morgenstern, J. Chromatogr., 1006, 77 (2003).CrossRefGoogle Scholar
  5. 5.
    Y.-S. Bae and C.-H. Lee, J. Chromatogr., 1122, 161 (2006).CrossRefGoogle Scholar
  6. 6.
    P. C. Wankat, Ind. Eng. Chem. Res., 40, 6185 (2001).CrossRefGoogle Scholar
  7. 7.
    P. C. Wankat and J. K. Kim, Abstr. Pap. Am. Chem. Soc., 225, U966- U966 (2003).Google Scholar
  8. 8.
    J. K. Kim and P. C. Wankat, Ind. Eng. Chem. Res., 43, 1071 (2004).CrossRefGoogle Scholar
  9. 9.
    X. Wang and C. B. Ching, Chem. Eng. Sci., 60, 1337 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Xie, C. Y. Chin, D. S. C. Phelps, C. H. Lee, K. B. Lee, S. Mun and N. H. L. Wang, Ind. Eng. Chem. Res., 44, 9904 (2005).CrossRefGoogle Scholar
  11. 11.
    S. Y. Mun, J. Liq. Chromatogr. Rel. Technol., 31, 1231 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Mun, Ind. Eng. Chem. Res., 49, 9258 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Mun, J. Chromatogr., 1218, 8060 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Mun, Process Biochem., 46, 977 (2011).CrossRefGoogle Scholar
  15. 15.
    F. Wei, B. Shen, M. J. Chen and Y. X. Zhao, Ind. Eng. Chem. Res., 51, 5805 (2012).CrossRefGoogle Scholar
  16. 16.
    A. M. Katti and P. Jagland, Analusis, 26, 38 (1998).CrossRefGoogle Scholar
  17. 17.
    B. Pynnonen, J. Chromatogr., 827, 143 (1998).CrossRefGoogle Scholar
  18. 18.
    J. Strube, S. Haumreisser, H. Schmidt-Traub, M. Schulte and R. Ditz, Org. Process. Res. Dev., 2, 305 (1998).CrossRefGoogle Scholar
  19. 19.
    A. Jupke, A. Epping and H. Schmidt-Traub, J. Chromatogr., 944, 93 (2002).CrossRefGoogle Scholar
  20. 20.
    J. Vanneste, S. De Ron, S. Vandecruys, S. A. Soare, S. Darvishmanesh and B. Van der Bruggen, Sep. Purif. Technol., 80, 600 (2011).CrossRefGoogle Scholar
  21. 21.
    O. Lisec, P. Hugo and A. Seidel-Morgenstern, J. Chromatogr., 908, 19 (2001).CrossRefGoogle Scholar
  22. 22.
    J. J. Van Deemter, F. J. Zuiderweg and A. Klinkenberg, Chem. Eng. Sci., 5, 271 (1956).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Jae-Ryong Song
    • 1
  • Hyukmin Park
    • 1
  • Jin-Il Kim
    • 1
  • Ngoc Lan Mai
    • 1
  • Yoon-Mo Koo
    • 1
  1. 1.Department of Biological EngineeringInha UniversityInchonKorea

Personalised recommendations