Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 1–11 | Cite as

Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks

  • Soosan Kim
  • Yiu Fai Tsang
  • Eilhann E. Kwon
  • Kun-Yi Andrew LinEmail author
  • Jechan LeeEmail author
Invited Review Paper
  • 64 Downloads

Abstract

Many processes for the conversion of biomass and its derivatives into value-added products (e.g., fuels and chemicals) use heterogeneous catalysts. However, the catalysts often suffer from deactivation under harsh reaction conditions, such as liquid phase at high temperatures and pressures. The catalyst deactivation is a big obstacle to developing industrially relevant biomass conversion processes, including leaching, sintering, and poisoning of metals and collapse of catalyst support. Different approaches have been applied to limit the reversible and irreversible deactivation, highly associated with the kind of catalyst, reactants, reaction conditions, etc. This review presents recent advances in strategies to stabilize heterogeneous catalysts against deactivation for biomass conversion reactions.

Keywords

Heterogeneous Catalyst Catalyst Stability Catalyst Deactivation Biomass Conversion Catalyst Design Biorefinery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chu and A. Majumdar, Nature, 488, 294 (2012).Google Scholar
  2. 2.
    S. P. A. Brown and M. K. Yücel, The Quarterly Review of Economics and Finance, 42, 193 (2002).Google Scholar
  3. 3.
    M. A. Brown, Energy Policy, 29, 1197 (2001).Google Scholar
  4. 4.
    V. Ramanathan and Y. Feng, Atmospheric Environ., 43, 37 (2009).Google Scholar
  5. 5.
    T. W. R. Powell and T. M. Lenton, Energy Environ. Sci., 5, 8116 (2012).Google Scholar
  6. 6.
    N. S. A. Rasid, S. S. A. Syed-Hassan, S. A. S. A. Kadir and M. Asadullah, Korean J. Chem. Eng., 30, 1277 (2013).Google Scholar
  7. 7.
    H. P. Jones, D. G. Hole and E. S. Zavaleta, Nat. Clim. Change, 2, 504 (2012).Google Scholar
  8. 8.
    H. C. McJeon, L. Clarke, P. Kyle, M. Wise, A. Hackbarth, B. P. Bryant and R. J. Lempert, Energy Econ., 33, 619 (2011).Google Scholar
  9. 9.
    V. Albino, L. Ardito, R. M. Dangelico and A. M. Petruzzelli, Appl. Energy, 135, 836 (2014).Google Scholar
  10. 10.
    A. Behr and J. P. Gomes, Eur. J. Lipid Sci. Technol., 112, 31 (2010).Google Scholar
  11. 11.
    S. Cho and J. Kim, Korean J. Chem. Eng., 33, 2808 (2016).Google Scholar
  12. 12.
    M. Song, H. D. Pham, J. Seon and H. C. Woo, Korean J. Chem. Eng., 32, 567 (2015).Google Scholar
  13. 13.
    A. Baral and G. S. Guha, Biomass Bioenergy, 27, 41 (2004).Google Scholar
  14. 14.
    C. H. Ko, S. H. Park, J.-K. Jeon, D. J. Suh, K.-E. Jeong and Y.-K. Park, Korean J. Chem. Eng., 29, 1657 (2012).Google Scholar
  15. 15.
    H. Lee, Y.-M. Kim, I.-G. Lee, J.-K. Jeon, S.-C. Jung, J. D. Chung, W. G. Choi and Y.-K. Park, Korean J. Chem. Eng., 33, 3299 (2016).Google Scholar
  16. 16.
    A. M. Henstra, J. Sipma, A. Rinzema and A. J. Stams, Curr. Opin. Biotechnol., 18, 200 (2007).Google Scholar
  17. 17.
    M. Martín, Energy Res. J., 5, 1 (2014).Google Scholar
  18. 18.
    R. Kumar, S. Singh and O. V. Singh, J. Ind. Microbiol. Biotechnol., 35, 377 (2008).Google Scholar
  19. 19.
    Y. Lee, H. Shafaghat, J.-k. Kim, J.-K. Jeon, S.-C. Jung, I.-G. Lee and Y.-K. Park, Korean J. Chem. Eng., 34, 2180 (2017).Google Scholar
  20. 20.
    H. Kim, H. Shafaghat, J.-k. Kim, B. S. Kang, J.-K. Jeon, S.-C. Jung, I.-G. Lee and Y.-K. Park, Korean J. Chem. Eng., 35, 922 (2018).Google Scholar
  21. 21.
    K. Srirangan, L. Akawi, M. Moo-Young and C. P. Chou, Appl. Energy, 100, 172 (2012).Google Scholar
  22. 22.
    Y.-C. Lin and G. W. Huber, Energy Environ. Sci., 2, 68 (2009).Google Scholar
  23. 23.
    H. Xiong, H. N. Pham and A. K. Datye, Green Chem., 16, 4627 (2014).Google Scholar
  24. 24.
    J. Wildschut, F. H. Mahfud, R. H. Venderbosch and H. J. Heeres, Ind. Eng. Chem. Res., 48, 10324 (2009).Google Scholar
  25. 25.
    G. C. de Araújo and M. do Carmo Rangel, Catal. Today, 62, 201 (2000).Google Scholar
  26. 26.
    C. H. Bartholomew, Appl. Catal. A-Gen., 212, 17 (2001).Google Scholar
  27. 27.
    D. L. Trimm, Catal. Rev., 16, 155 (1977).Google Scholar
  28. 28.
    S. M. Davis, F. Zaera and G. A. Somorjai, J. Catal., 77, 439 (1982).Google Scholar
  29. 29.
    R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra and S. Subramoney, Science, 259, 346 (1993).Google Scholar
  30. 30.
    C. H. Bartholomew, Chem. Eng., 91, 96 (1984).Google Scholar
  31. 31.
    J. Guo, H. Lou and X. Zheng, Carbon, 45, 1314 (2007).Google Scholar
  32. 32.
    P. G. Menon, J. Mol. Catal., 59, 207 (1990).Google Scholar
  33. 33.
    M. D. Argyle and C. H. Bartholomew, Catalysts, 5, 145 (2015).Google Scholar
  34. 34.
    S. Kuroda, J. Kawakita, M. Watanabe and H. Katanoda, Sci. Technol. Adv. Mater., 9, 033002 (2008).Google Scholar
  35. 35.
    D. L. Trimm, Appl. Catal. A-Gen., 212, 153 (2001).Google Scholar
  36. 36.
    R. Zhang, F. Li, N. Zhang and Q. Shi, Appl. Catal. A-Gen., 239, 17 (2003).Google Scholar
  37. 37.
    J. A. Almquist and C. A. Black, J. Am. Chem. Soc., 48, 2814 (1926).Google Scholar
  38. 38.
    M. Lyubovsky and L. Pfefferle, Catal. Today, 47, 29 (1999).Google Scholar
  39. 39.
    H.-P. Koh and R. Hughes, J. Catal., 33, 7 (1974).Google Scholar
  40. 40.
    E. L. Force and A. T. Bell, J. Catal., 40, 356 (1975).Google Scholar
  41. 41.
    L. L. Hegedus and R. W. McCabe, Catalyst Poisoning, in: B. Delmon, G. F. Froment (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 471 (1980).Google Scholar
  42. 42.
    C. H. Bartholomew, Mechanisms of Nickel Catalyst Poisoning, in: B. Delmon, G. F. Froment (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 81 (1987).Google Scholar
  43. 43.
    F. S. Karn, J. F. Schultz, R. E. Kelly and R. B. Anderson, Ind. Eng. Chem. Prod. Res. Dev., 2, 43 (1963).Google Scholar
  44. 44.
    H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki and M. Yumura, Appl. Phys. Lett., 77, 79 (2000).Google Scholar
  45. 45.
    M. Hartmann and S. Ernst, Angew. Chem., Int. Ed., 39, 888 (2000).Google Scholar
  46. 46.
    J. J. Dijkstra, J. C. L. Meeussen and R. N. J. Comans, Environ. Sci. Technol., 38, 4390 (2004).Google Scholar
  47. 47.
    K.-i. Shimizu, A. Satsuma and T. Hattori, Catal. Surv. Jpn., 4, 115 (2001).Google Scholar
  48. 48.
    T. de Freitas Silva, J. A. C. Dias, C. G. Maciel and J. M. Assaf, Catal. Sci. Technol., 3, 635 (2013).Google Scholar
  49. 49.
    S. Sepehri and M. Rezaei, Chem. Eng. Technol., 38, 1637 (2015).Google Scholar
  50. 50.
    C. U. Jung, M.-S. Park, W. N. Kang, M.-S. Kim, K. H. Kim, S. Y. Lee and S.-I. Lee, Appl. Phys. Lett., 78, 4157 (2001).Google Scholar
  51. 51.
    P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson and G. A. Gehring, Nat. Mater., 2, 673 (2003).Google Scholar
  52. 52.
    R. B. Bagwell and G. L. Messing, J. Am. Ceram. Soc., 82, 825 (1999).Google Scholar
  53. 53.
    V. Goertz, F. Weis, E. Keln, H. Nirschl and M. Seipenbusch, Aerosol Sci. Tech., 45, 1287 (2011).Google Scholar
  54. 54.
    J. Lif, M. Skoglundh and L. Löwendahl, Appl. Catal. A-Gen., 228, 145 (2002).Google Scholar
  55. 55.
    J. R. Rostrup-Nielsen, K. Pedersen and J. Sehested, Appl. Catal. A Gen., 330, 134 (2007).Google Scholar
  56. 56.
    M.-K. Kang, D.-Y. Kim and N. M. Hwang, J. Eur. Ceram. Soc., 22, 603 (2002).Google Scholar
  57. 57.
    S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested and S. Helveg, J. Catal., 281, 147 (2011).Google Scholar
  58. 58.
    S. R. Challa, A. T. Delariva, T. W. Hansen, S. Helveg, J. Sehested, P. L. Hansen, F. Garzon and A. K. Datye, J. Am. Chem. Soc., 133, 20672 (2011).Google Scholar
  59. 59.
    B. J. O’Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic and G. W. Huber, ACS Catal., 5, 1804 (2015).Google Scholar
  60. 60.
    M. Ritala, M. Leskela, L. Niinisto and P. Haussalo, Chem. Mater., 5, 1174 (1993).Google Scholar
  61. 61.
    M. Ritala, M. Leskelä, E. Nykänen, P. Soininen and L. Niinistö, Thin Solid Films, 225, 288 (1993).Google Scholar
  62. 62.
    J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare and V. Sammelselg, Thin Solid Films, 340, 110 (1999).Google Scholar
  63. 63.
    A. C. Dillon, A. W. Ott, J. D. Way and S. M. George, Surf. Sci., 322, 230 (1995).Google Scholar
  64. 64.
    G. S. Higashi and C. G. Fleming, Appl. Phys. Lett., 55, 1963 (1989).Google Scholar
  65. 65.
    J. Lu, B. Fu, M. C. Kung, G. Xiao, J. W. Elam, H. H. Kung and P. C. Stair, Science, 335, 1205 (2012).Google Scholar
  66. 66.
    B. J. O’Neill, D. H. K. Jackson, A. J. Crisci, C. A. Farberow, F. Shi, A. C. Alba-Rubio, J. Lu, P. J. Dietrich, X. Gu, C. L. Marshall, P. C. Stair, J. W. Elam, J. T. Miller, F. H. Ribeiro, P. M. Voyles, J. Greeley, M. Mavrikakis, S. L. Scott, T. F. Kuech and J. A. Dumesic, Angew. Chem., Int. Ed., 52, 13808 (2013).Google Scholar
  67. 67.
    J.-P. Lange, E. van der Heide, J. van Buijtenen and R. Price, Chem- SusChem, 5, 150 (2012).Google Scholar
  68. 68.
    R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba and M. López Granados, Energy Environ. Sci., 9, 1144 (2016).Google Scholar
  69. 69.
    C. M. Cai, T. Zhang, R. Kumar and C. E. Wyman, J. Chem. Technol. Biotechnol., 89, 2 (2014).Google Scholar
  70. 70.
    J. Greeley, Electrochim. Acta, 55, 5545 (2010).Google Scholar
  71. 71.
    B. J. O’Neill, J. T. Miller, P. J. Dietrich, F. G. Sollberger, F. H. Ribeiro and J. A. Dumesic, ChemCatChem, 6, 2493 (2014).Google Scholar
  72. 72.
    H. Zhang, Y. Lei, A. J. Kropf, G. Zhang, J. W. Elam, J. T. Miller, F. Sollberger, F. Ribeiro, M. C. Akatay, E. A. Stach, J. A. Dumesic and C. L. Marshall, J. Catal., 317, 284 (2014).Google Scholar
  73. 73.
    H. Zhang, Y. Lei, A. Jeremy Kropf, G. Zhang, J. W. Elam, J. T. Miller, F. Sollberger, F. Ribeiro, M. Cem Akatay, E. A. Stach, J. A. Dumesic and C. L. Marshall, J. Catal., 323, 165 (2015).Google Scholar
  74. 74.
    B. J. O’Neill, C. Sener, D. H. K. Jackson, T. F. Kuech and J. A. Dumesic, ChemSusChem, 7, 3247 (2014).Google Scholar
  75. 75.
    J. Lee, D. H. K. Jackson, T. Li, R. E. Winans, J. A. Dumesic, T. F. Kuech and G. W. Huber, Energy Environ. Sci., 7, 1657 (2014).Google Scholar
  76. 76.
    H. Zhang, C. Canlas, A. Jeremy Kropf, J. W. Elam, J. A. Dumesic and C. L. Marshall, J. Catal., 326, 172 (2015).Google Scholar
  77. 77.
    D. Liu, D. Zemlyanov, T. Wu, R. J. Lobo-Lapidus, J. A. Dumesic, J. T. Miller and C. L. Marshall, J. Catal., 299, 336 (2013).Google Scholar
  78. 78.
    Y. J. Pagán-Torres, J. M. R. Gallo, D. Wang, H. N. Pham, J. A. Libera, C. L. Marshall, J. W. Elam, A. K. Datye and J. A. Dumesic, ACS Catal., 1, 1234 (2011).Google Scholar
  79. 79.
    J. J. Bozell, Science, 329, 522 (2010).Google Scholar
  80. 80.
    J. C. Serrano-Ruiz, D. Wang and J. A. Dumesic, Green Chem., 12, 574 (2010).Google Scholar
  81. 81.
    J.-P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke and H. Gosselink, Angew. Chem., Int. Ed., 49, 4479 (2010).Google Scholar
  82. 82.
    C.-J. Pan, M.-C. Tsai, W.-N. Su, J. Rick, N. G. Akalework, A. K. Agegnehu, S.-Y. Cheng and B.-J. Hwang, J. Taiwan Inst. Chem. E., 74, 154 (2017).Google Scholar
  83. 83.
    D. E. Resasco and G. L. Haller, J. Catal., 82, 279 (1983).Google Scholar
  84. 84.
    J. Santos, J. Phillips and J. A. Dumesic, J. Catal., 81, 147 (1983).Google Scholar
  85. 85.
    S. J. Tauster, Acc. Chem. Res., 20, 389 (1987).Google Scholar
  86. 86.
    J. A. Dumesic, S. A. Stevenson, R. D. Sherwood and R. T. K. Baker, J. Catal., 99, 79 (1986).Google Scholar
  87. 87.
    S. Zander, E. L. Kunkes, M. E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlögl and M. Behrens, Angew. Chem., Int. Ed., 52, 6536 (2013).Google Scholar
  88. 88.
    R. Naumann d’Alnoncourt, M. Friedrich, E. Kunkes, D. Rosenthal, F. Girgsdies, B. Zhang, L. Shao, M. Schuster, M. Behrens and R. Schlögl, J. Catal., 317, 220 (2014).Google Scholar
  89. 89.
    A. Bruix, J. A. Rodriguez, P. J. Ramírez, S. D. Senanayake, J. Evans, J. B. Park, D. Stacchiola, P. Liu, J. Hrbek and F. Illas, J. Am. Chem. Soc., 134, 8968 (2012).Google Scholar
  90. 90.
    G. Melaet, W. T. Ralston, C.-S. Li, S. Alayoglu, K. An, N. Musselwhite, B. Kalkan and G. A. Somorjai, J. Am. Chem. Soc., 136, 2260 (2014).Google Scholar
  91. 91.
    L. R. Baker, G. Kennedy, M. Van Spronsen, A. Hervier, X. Cai, S. Chen, L.-W. Wang and G. A. Somorjai, J. Am. Chem. Soc., 134, 14208 (2012).Google Scholar
  92. 92.
    J. Lee, S. P. Burt, C. A. Carrero, A. C. Alba-Rubio, I. Ro, B. J. O’Neill, H. J. Kim, D. H. K. Jackson, T. F. Kuech, I. Hermans, J. A. Dumesic and G. W. Huber, J. Catal., 330, 19 (2015).Google Scholar
  93. 93.
    N. M. Eagan, J. P. Chada, A. M. Wittrig, J. S. Buchanan, J. A. Dumesic and G. W. Huber, Joule, 1, 178 (2017).Google Scholar
  94. 94.
    H. N. Pham, A. E. Anderson, R. L. Johnson, K. Schmidt-Rohr and A. K. Datye, Angew. Chem., Int. Ed., 51, 13163 (2012).Google Scholar
  95. 95.
    H. Xiong, H. N. Pham and A. K. Datye, J. Catal., 302, 93 (2013).Google Scholar
  96. 96.
    H. Xiong, M. Nolan, B. H. Shanks and A. K. Datye, Appl. Catal. A-Gen., 471, 165 (2014).Google Scholar
  97. 97.
    H. Xiong, T. J. Schwartz, N. I. Andersen, J. A. Dumesic and A. K. Datye, Angew. Chem., Int. Ed., 54, 7939 (2015).Google Scholar
  98. 98.
    F. Héroguel, L. Silvioli, Y.-P. Du and J. S. Luterbacher, J. Catal., 358, 50 (2018).Google Scholar
  99. 99.
    J.-P. Lange and V. Otten, J. Catal., 238, 6 (2006).Google Scholar
  100. 100.
    J.-P. Lange and V. Otten, Ind. Eng. Chem. Res., 46, 6899 (2007).Google Scholar
  101. 101.
    N. M. Bertero, A. F. Trasarti, C. R. Apesteguía and A. J. Marchi, Appl. Catal. A-Gen., 458, 28 (2013).Google Scholar
  102. 102.
    Z. Luo, Y. Wang, M. He and C. Zhao, Green Chem., 18, 433 (2016).Google Scholar
  103. 103.
    T.-S. Nguyen, D. Laurenti, P. Afanasiev, Z. Konuspayeva and L. Piccolo, J. Catal., 344, 136 (2016).Google Scholar
  104. 104.
    M. B. Griffin, G. A. Ferguson, D. A. Ruddy, M. J. Biddy, G. T. Beckham and J. A. Schaidle, ACS Catal., 6, 2715 (2016).Google Scholar
  105. 105.
    Q. Tan, G. Wang, A. Long, A. Dinse, C. Buda, J. Shabaker and D. E. Resasco, J. Catal., 347, 102 (2017).Google Scholar
  106. 106.
    P. A. Zapata, J. Faria, M. P. Ruiz, R. E. Jentoft and D. E. Resasco, J. Am. Chem. Soc., 134, 8570 (2012).Google Scholar
  107. 107.
    P. A. Zapata, Y. Huang, M. A. Gonzalez-Borja and D. E. Resasco, J. Catal., 308, 82 (2013).Google Scholar
  108. 108.
    T. van Haasterecht, C. C. I. Ludding, K. P. de Jong and J. H. Bitter, J. Catal., 319, 27 (2014).Google Scholar
  109. 109.
    J. H. Vleeming, B. F. M. Kuster, G. B. Marin, F. Oudet and P. Courtine, J. Catal., 166, 148 (1997).Google Scholar
  110. 110.
    L. Ahonen and O. H. Tuovinen, Hydrometallurgy, 37, 1 (1995).Google Scholar
  111. 111.
    B. Beverskog and I. Puigdomenech, Corros. Sci., 39, 969 (1997).Google Scholar
  112. 112.
    D. A. Palmer, P. Bénézeth, C. Xiao, D. J. Wesolowski and L. M. Anovitz, J. Solution Chem., 40, 680 (2011).Google Scholar
  113. 113.
    A. G. Gayubo, B. Valle, A. T. Aguayo, M. Olazar and J. Bilbao, Energy Fuels, 23, 4129 (2009).Google Scholar
  114. 114.
    C. Aellig, D. Scholz, P. Y. Dapsens, C. Mondelli and J. Pérez-Ramírez, Catal. Sci. Technol., 5, 142 (2015).Google Scholar
  115. 115.
    B. M. Moreno, N. Li, J. Lee, G. W. Huber and M. T. Klein, RSC Adv., 3, 23769 (2013).Google Scholar
  116. 116.
    L. Vilcocq, A. Cabiac, C. Especel, S. Lacombe and D. Duprez, J. Catal., 320, 16 (2014).Google Scholar
  117. 117.
    D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Chem. Soc. Rev., 41, 8075 (2012).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.Department of Environmental and Safety EngineeringAjou UniversitySuwonKorea
  2. 2.Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong Kong
  3. 3.Department of Environment and EnergySejong UniversitySeoulKorea
  4. 4.Department of Environmental Engineering & Innovation and Development Center of Sustainable AgricultureNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations