Advertisement

Facile and simple synthesis of triethylenetetramine-modified mesoporous silica adsorbent for removal of Cd(II)

  • Atena Abedi
  • Hamidreza Ghafouri Taleghani
  • Mohsen Ghorbani
  • Hamed Salimi Kenari
Research Papers

Abstract

Monodispersed porous silica microspheres (SM) were synthesized and further functionalized with amine moieties using triethylenetetramine (TETA) in order to obtain a novel adsorbent for Cd(II) elimination from aqueous media. The morphology, texture and structure of samples were characterized with the aid of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), scanning and transmission electron microscopy (SEM, TEM), energy dispersive spectroscopy (EDS), and N2 adsorption-desorption. The adsorption efficiency was investigated based on the effect of operational parameters including pH of the solution, the dose of adsorbent, adsorption time, initial concentration of Cd(II) ions and temperature. The equilibrium, kinetics and thermodynamics of Cd(II) adsorption were also studied. The maximum adsorption capacity of amine functionalized silica microspheres (AMSM) for Cd(II) was 35.6 mg g-1. Cd(II) adsorption onto AMSM had highest consistency with Sips and Langmuir isotherms, while adsorption kinetics was best fitted with pseudo-second order model. Thermodynamics of adsorption revealed that Cd(II) adsorption on AMSM was spontaneous, feasible and exothermic with physical interactions and pore diffusion being the dominant mechanisms in the adsorption process. Results confirmed that AMSM adsorbent has the potential to be a suitable candidate for Cd(II) removal from aqueous solutions.

Keywords

Mesoporous Silica Microspheres Amine Functionalized Adsorption Cd(II) Removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ruthiraan, N. M. Mubarak, R. K. Thines, E. C. Abdullah, J. N. Sahu, N. S. Jayakumar and P. Ganesan, Korean J. Chem. Eng., 32, 446 (2015).CrossRefGoogle Scholar
  2. 2.
    M. Yap, N. Mubarak, J. Sahu and E. Abdullah, J. Ind. Eng. Chem., 45, 287 (2017).CrossRefGoogle Scholar
  3. 3.
    K. H. Nelke, M. Mulak, K. Luczak, W. Pawlak, J. Nienartowicz, D. Szumny, M. Kochman and H. Gerber, Pol. J. Environ. Stud., 24, 1491 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Godt, F. Scheidig, C. Grosse-Siestrup, V. Esche, P. Brandenburg, A. Reich and D. A. Groneberg, J. Occup. Med. Toxicol., 1, 1 (2006).CrossRefGoogle Scholar
  5. 5.
    N. Mubarak, M. Ruthiraan, J. Sahu, E. Abdullah, N. Jayakumar, N. Sajuni and J. Tan, Int. J. Nanosci., 12, 1350044 (2013).CrossRefGoogle Scholar
  6. 6.
    E. Da'na, Micropor. Mesopor. Mater., 247, 145 (2017).CrossRefGoogle Scholar
  7. 7.
    D. Purkayastha, U. Mishra and S. Biswas, J. Water Process Eng., 2, 105 (2014).CrossRefGoogle Scholar
  8. 8.
    V. K. Gupta and S. Sharma, Environ. Sci. Technol., 36, 3612 (2002).CrossRefGoogle Scholar
  9. 9.
    H. Ye, Q. Zhu and D. Du, Bioresour. Technol., 101, 5175 (2010).CrossRefGoogle Scholar
  10. 10.
    K. Thines, E. Abdullah, N. Mubarak and M. Ruthiraan, Renew. Sust. Energy Rev., 67, 257 (2017).CrossRefGoogle Scholar
  11. 11.
    T. Sasaki, T. Michihata, Y. Katsuyama, H. Take, S. Nakamura, M. Aburatani, K. Tokuda, T. Koyanagi, H. Taniguchi and T. Enomoto, J. Agric. Food Chem., 61, 1184 (2013).CrossRefGoogle Scholar
  12. 12.
    A. Kundu, B. S. Gupta, M. Hashim, J. Sahu, M. Mujawar and G. Redzwan, RSC Adv., 5, 35899 (2015).CrossRefGoogle Scholar
  13. 13.
    C. Luo, R. Wei, D. Guo, S. Zhang and S. Yan, Chem. Eng. J., 225, 406 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Sari and M. Tuzen, Appl. Clay Sci., 88, 63 (2014).CrossRefGoogle Scholar
  15. 15.
    J. Liang, J. Liu, X. Yuan, H. Dong, G. Zeng, H. Wu, H. Wang, J. Liu, S. Hua and S. Zhang, Chem. Eng. J., 273, 101 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Xue, J. Xu, S. A. Baig and X. Xu, J. Taiwan Inst. Chem. Eng., 59, 365 (2016).CrossRefGoogle Scholar
  17. 17.
    Z. Yu, Q. Dang, C. Liu, D. Cha, H. Zhang, W. Zhu, Q. Zhang and B. Fan, Carbohydr. Polym., 172, 28 (2017).CrossRefGoogle Scholar
  18. 18.
    K. F. Lam, K. L. Yeung and G. McKay, Environ. Sci. Technol., 41, 3329 (2007).CrossRefGoogle Scholar
  19. 19.
    N. Mubarak, R. Alicia, E. Abdullah, J. Sahu, A. A. Haslija and J. Tan, J. Environ. Chem. Eng., 1, 486 (2013).CrossRefGoogle Scholar
  20. 20.
    L. C. Lin, M. Thirumavalavan and J. F. Lee, CLEAN-Soil, Air, Water., 43, 775 (2015).CrossRefGoogle Scholar
  21. 21.
    A. Liu, K. Hidajat, S. Kawi and D. Zhao, Chem. Commun., 1, 145 (2000).Google Scholar
  22. 22.
    M. Najafi, Y. Yousefi and A. Rafati, Sep. Purif. Technol., 85, 193 (2012).CrossRefGoogle Scholar
  23. 23.
    Y. Le, D. Guo, B. Cheng and J. Yu, J. Colloid Interface Sci., 408, 173 (2013).CrossRefGoogle Scholar
  24. 24.
    J. Jiao, J. Cao, Y. Xia and L. Zhao, Chem. Eng. J., 306, 9 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Hao, A. Verlotta, P. Aprea, F. Pepe, D. Caputo and W. Zhu, Micropor. Mesopor. Mater., 236, 250 (2016).CrossRefGoogle Scholar
  26. 26.
    N. Velikova, Y. Vueva, Y. Ivanova, I. Salvado, M. Fernandes, P. Vassileva, R. Georgieva and A. Detcheva, J. Non-Cryst. Solids, 378, 89 (2013).CrossRefGoogle Scholar
  27. 27.
    K. S. Sing, Pure Appl. Chem., 57, 603 (1985).CrossRefGoogle Scholar
  28. 28.
    X. Li, B. Shi, Y. Wang, M. Li, Y. Liu, L. Gao and L. Mao, Micropor. Mesopor. Mater., 214, 15 (2015).CrossRefGoogle Scholar
  29. 29.
    M. Thommes, Chem. Ing. Tech., 82, 1059 (2010).CrossRefGoogle Scholar
  30. 30.
    M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard and V. Hulea, Chemosphere, 73, 1499 (2008).CrossRefGoogle Scholar
  31. 31.
    A. K. Thakur, G. M. Nisola, L. A. Limjuco, K. J. Parohinog, R. E. C. Torrejos, V. K. Shahi and W.-J. Chung, J. Ind. Eng. Chem., 49, 133 (2017).CrossRefGoogle Scholar
  32. 32.
    S. J. Mousavi, M. Parvini and M. Ghorbani, J. Taiwan Inst. Chem. Eng., 84, 123 (2018).CrossRefGoogle Scholar
  33. 33.
    M. Ghorbani and H. Eisazadeh, Compos. Part B Eng., 45, 1 (2013).CrossRefGoogle Scholar
  34. 34.
    M. Pashai Gatabi, H. Milani Moghaddam and M. Ghorbani, J. Mol. Liq., 216, 117 (2016).CrossRefGoogle Scholar
  35. 35.
    M. Pashai Gatabi, H. Milani Moghaddam and M. Ghorbani, J. Nanopart. Res., 18, 1 (2016).CrossRefGoogle Scholar
  36. 36.
    M. Fouladgar, M. Beheshti and H. Sabzyan, J. Mol. Liq., 211, 1060 (2015).CrossRefGoogle Scholar
  37. 37.
    B. Alizadeh, M. Ghorbani and M. A. Salehi, J. Mol. Liq., 220, 142 (2016).CrossRefGoogle Scholar
  38. 38.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  39. 39.
    T. W. Weber and R. K. Chakravorti, AIChE J., 20, 228 (1974).CrossRefGoogle Scholar
  40. 40.
    H. Freundlich, J. Phys. Chem., 57, e470 (1906).Google Scholar
  41. 41.
    O. Redlich and D. L. Peterson, J. Phys. Chem., 63, 1024 (1959).CrossRefGoogle Scholar
  42. 42.
    M. Temkin and V. Pyzhev, Acta Physiochim. URSS, 12, 217 (1940).Google Scholar
  43. 43.
    K. Foo and B. Hameed, Chem. Eng. J., 156, 2 (2010).CrossRefGoogle Scholar
  44. 44.
    M. Xie, L. Zeng, Q. Zhang, Y. Kang, H. Xiao, Y. Peng, X. Chen and J. Luo, J. Alloys Compd., 647, 892 (2015).CrossRefGoogle Scholar
  45. 45.
    T. Sheela and Y. A. Nayaka, Chem. Eng. J., 191, 123 (2012).CrossRefGoogle Scholar
  46. 46.
    M. Rasouli, N. Yaghobi, M. Hafezi and M. Rasouli, J. Ind. Eng. Chem., 18, 1970 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Atena Abedi
    • 1
  • Hamidreza Ghafouri Taleghani
    • 1
  • Mohsen Ghorbani
    • 2
  • Hamed Salimi Kenari
    • 1
  1. 1.Faculty of Chemical EngineeringUniversity of MazandaranBabolsarIran
  2. 2.Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations