Advertisement

Influence of surfactant on the synthesis of BiOCl/WO3 microcomposites for enhanced adsorption in aqueous solutions

  • Sangeeta Adhikari
  • Do-Heyoung KimEmail author
Research Papers
  • 6 Downloads

Abstract

BiOCl/WO3 microcomposites were synthesized using a one-step hydrothermal route in the presence of a variety of surfactants: polyvinylpyrrolidone (PVP), triethylene glycol (TEG), and Triton X-100 (TX-100). The as-synthesized microcomposites were exploited as efficient adsorbents for removing organic dyes (rhodamine B and methylene blue). Prior to adsorption studies, the structural, functional, and morphological characteristics of these adsorbents were studied using analytical techniques, including XRD, FE-SEM, TEM, and UV-DRS, which revealed the presence of large surface areas. The experimental results show that the PVP-synthesized BiOCl/WO3 microcomposite was significantly more effective as an adsorbent than the microcomposites synthesized using TEG or TX-100. This enhanced adsorption performance is attributable to the larger surface area associated with the developed microstructure of the PVP-stabilized BiOCl/WO3 microcomposite. The BiOCl/WO3 microcomposite synthesized from PVP was subjected to parametric studies involving catalyst dosage, pH, and initial dye concentration. The experimental data were fitted to isotherm models, and the mechanism of adsorption was investigated.

Keywords

BiOCl/WO3 Composite Surfactant Adsorption Rhodamine B Methylene Blue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Srinivasan and T. Viraraghavan, J. Environ. Manage., 91, 1915 (2010).CrossRefGoogle Scholar
  2. 2.
    M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim and A. Idris, Desalination, 280, 1 (2011).CrossRefGoogle Scholar
  3. 3.
    G. Bayramoglu and M. Y. Arica, Korean J. Chem. Eng., 35, 1303 (2018).CrossRefGoogle Scholar
  4. 4.
    S. Khamparia and D. Jaspal, J. Environ. Manage., 183, 786 (2016).CrossRefGoogle Scholar
  5. 5.
    N. P. Raval, P. U. Shah and N. K. Shah, Environ. Sci. Pollut. Res. Int., 23, 14810 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Galliano, F. Bella, G. Piana, G. Giacona, G. Viscardi, C. Gerbaldi, M. Grätzel and C. Barolo, Sol. Energy, 163, 251 (2018).CrossRefGoogle Scholar
  7. 7.
    F. Bella, S. Galliano, C. Gerbaldi and G. Viscardi, Energies, 9, 384 (2016).CrossRefGoogle Scholar
  8. 8.
    F. Bella, S. Galliano, M. Falco, G. Viscardi, C. Barolo, M. Grätzel and C. Gerbaldi, Chem. Sci., 7, 4880 (2016).CrossRefGoogle Scholar
  9. 9.
    H. N. Park, C.-W. Cho, H. A. Choi and S. W. Won, Korean J. Chem. Eng., 34, 2519 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Zhu, W. Tian, H. Chai and J. Yao, Korean J. Chem. Eng., 34, 1073 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Sojka-Ledakowicz, R. Zylla, Z. Mrozinska, K. Pazdzior, A. Klepacz-Smolka and S. Ledakowicz, Desalination, 250, 634 (2010).CrossRefGoogle Scholar
  12. 12.
    S. K. Ling, S. Wang and Y. Peng, J. Hazard. Mater., 178, 385 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Pirkarami and M. E. Olya, J. Saudi Chem. Soc., 21, S179 (2017).Google Scholar
  14. 14.
    C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni and A. B. Pandit, J. Environ. Manage., 182, 351 (2016).CrossRefGoogle Scholar
  15. 15.
    P. Avetta, F. Bella, A. Bianco Prevot, E. Laurenti, E. Montoneri, A. Arques and L. Carlos, ACS Sustain. Chem. Eng., 1, 1545 (2013).CrossRefGoogle Scholar
  16. 16.
    Y. Wang, T. Du, L. Zhou, Y. Song, S. Che and X. Fang, Korean J. Chem. Eng., 35, 709 (2018).CrossRefGoogle Scholar
  17. 17.
    D. Pathania, S. Sharma and P. Singh, Arab. J. Chem., 10, S1445 (2017).Google Scholar
  18. 18.
    B. Kok, K. Tan, M. Vakili, B. Horri, P. E. Poh, A. Z. Abdullah and B. Salamatinia, Sep. Purif. Technol., 150, 229 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Mirzazadeh and M. Lashanizadegan, Korean J. Chem. Eng., 35, 684 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Adhikari, S. Mandal, D. Sarkar, D.-H. Kim and G. Madras, Appl. Surf. Sci., 420, 472 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Li, S. Sun, R. Chen, T. Zhang, B. Ren, D. D. Dionysiou, Z. Wu, X. Liu and M. Ye, Environ. Sci. Pollut. Res. Int., 24, 9556 (2017).CrossRefGoogle Scholar
  22. 22.
    J. He, J. Wang, Y. Liu, Z. Mirza, C. Zhao and W. Xiao, Ceram. Int., 41, 8028 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Yu, Z. Hu, Y. Zhang and H. Gao, RSC Adv., 6, 18577 (2016).CrossRefGoogle Scholar
  24. 24.
    K. Shen, M. A. Gondal, A. A. Al-Saadi, L. Li, X. Chang and Q. Xu, Res. Chem. Intermed., 41, 2753 (2015).CrossRefGoogle Scholar
  25. 25.
    M. Heidarizad and S. S. Şengör, J. Mol. Liq., 224, 607 (2016).CrossRefGoogle Scholar
  26. 26.
    F. Mian, G. Bottaro, M. Rancan, L. Pezzato, V. Gombac, P. Fornasiero and L. Armelao, ACS Omega, 2, 6298 (2017).CrossRefGoogle Scholar
  27. 27.
    S.-M. Park and C. Nam, Ceram. Int., 43, 17022 (2017).CrossRefGoogle Scholar
  28. 28.
    A. Staerz, U. Weimar and N. Barsan, Sensors (Basel, Switzerland), 16, 1815 (2016).CrossRefGoogle Scholar
  29. 29.
    J.-H. Choi, S.-K. Kim and Y.-C. Bak, Korean J. Chem. Eng., 18, 719 (2001).CrossRefGoogle Scholar
  30. 30.
    S. Shamaila, A. K. L. Sajjad, F. Chen and J. Zhang, J. Colloid Interface Sci., 356, 465 (2011).CrossRefGoogle Scholar
  31. 31.
    M. Fojtu, W. Z. Teo and M. Pumera, Environ. Sci.: Nano, 4, 1617 (2017).Google Scholar
  32. 32.
    R. Halvaeifard and S. Sharifnia, Korean J. Chem. Eng., 35, 770 (2018).CrossRefGoogle Scholar
  33. 33.
    S. A. McCarthy, R. Ratkic, F. Purcell-Milton, T. S. Perova and Y. K. Gun’ko, Sci. Reps., 8, 2860 (2018).CrossRefGoogle Scholar
  34. 34.
    S. Adhikari and D. Sarkar, Electrochim. Acta, 138, 115 (2014).CrossRefGoogle Scholar
  35. 35.
    H. Wu, X. Ding, W. Li, C. Ren and H. Yang, J. Mater. Sci.: Mater. Electron., 28, 18542 (2017).Google Scholar
  36. 36.
    Z. S. Seddigi, M. Gondal, U. Baig, S. A. Ahmed, M. Abdulaziz, E. Danish, M. Khaled and A. Lais, PloS ONE, 12(2), 1 (2017).CrossRefGoogle Scholar
  37. 37.
    N. Malusi Mkhize, B. Sithole and M. Ntunka, J. Wood Chem. Technol., 35, 374 (2015).CrossRefGoogle Scholar
  38. 38.
    Q. Fan, J. Liu, Y. Yu and S. Zuo, RSC Adv., 4, 61877 (2014).CrossRefGoogle Scholar
  39. 39.
    X. Gao, W. Peng, G. Tang, Q. Guo and Y. Luo, J. Alloys Compd., 757, 455 (2018).CrossRefGoogle Scholar
  40. 40.
    Y. Cai, D. Li, J. Sun, M. Chen, Y. Li, Z. Zou, H. Zhang, H. Xu and D. Xia, Appl. Surf. Sci., 439, 697 (2018).CrossRefGoogle Scholar
  41. 41.
    S. Mandal, T. Padhi and R. K. Patel, J. Hazard. Mater., 192, 899 (2011).CrossRefGoogle Scholar
  42. 42.
    D. Robati, J. Nanostructure Chem., 3, 55 (2013).CrossRefGoogle Scholar
  43. 43.
    T. S. Natarajan, H. C. Bajaj and R. J. Tayade, J. Colloid Interface Sci., 433, 104 (2014).CrossRefGoogle Scholar
  44. 44.
    K. Syam and J. Pethaiyan, Eur. J. Inorg. Chem., 2015, 4260 (2015).CrossRefGoogle Scholar
  45. 45.
    Y. Bessekhouad, D. Robert, J. V. Weber and N. Chaoui, J. Photochem. Photobio. A: Chem., 167, 49 (2004).CrossRefGoogle Scholar
  46. 46.
    S. A. Singh and G. Madras, Sep. Purif. Technol., 105, 79 (2013).CrossRefGoogle Scholar
  47. 47.
    J. Song, Q. Fan, W. Zhu, R. Wang and Z. Dong, Mater. Lett., 165, 14 (2016).CrossRefGoogle Scholar
  48. 48.
    Q. Zhao, Y. Xing, Z. Liu, J. Ouyang and C. Du, Nanoscale Res. Let., 13, 69 (2018).CrossRefGoogle Scholar
  49. 49.
    Z. Ding, W. Wang, Y. Zhang, F. Li and J. P. Liu, J. Alloys Compd., 640, 362 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations