Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 2, pp 217–225 | Cite as

Degradation and removal of p-nitroaniline from aqueous solutions using a novel semi-fluid Fe/charcoal micro-electrolysis reactor

  • Mohammad Malakootian
  • Mostafa Pournamdari
  • Ali Asadipour
  • Hakimeh MahdizadehEmail author
Environmental Engineering
  • 14 Downloads

Abstract

p-Nitroaniline (PNA) is a common contaminant in the wastewater of oil refineries, the petrochemical industry and from production of pesticides, dyes and glue. The aim of this research was to determine the extent of degradation and removal of PNA from aqueous solutions by a novel semi-fluid Fe/charcoal reactor, process optimization, determination of the intermediate and final products and the degradation reaction path. The effective factors in the degradation process were contact time, aeration amount, initial PNA concentration, Fe/charcoal ratio, and initial pH of the solution. The intermediate products were determined by GC-MS. The kinetics of the degradation reaction also was determined. PNA removal efficiency in an actual sample from petrochemical industry wastewater was tested under optimal conditions. The maximum removal efficiency under the optimal conditions (pH: 7; contact time 120 min; aeration rate 10 L/min; Fe/charcoal ratio: 2/1; initial concentration of PNA: 10 mg/L) for the synthetic solution and in actual wastewater samples were 95% and 89%, respectively. In addition, the system stability was investigated in ten consecutive cycles of the electrode reuse. The removal efficiency decreased as low as 5%, which indicates the high stability of the system. The degradation process was determined to follow pseudo-first kinetics and the Langmuir-Hinshelwood model. Fe/charcoal micro-electrolysis is a relatively highly efficient system for removing PNA from wastewater and is suggested for this purpose.

Keywords

Micro-electrolysis Fe/Charcoal PNA Galvanic Cells Degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Nwokem, C. Gimba, G. Ndukwe and S. Abechi, J. Adv. Sci. Res., 5, 2 (2014).Google Scholar
  2. 2.
    C. Lai, B. Li, M. Chen, G. Zeng, D. Huang, L. Qin, X. Liu, M. Cheng, J. Wan, C. Du, F. Huang, S. Liu and H. Yi, Int. J. Hydrogen Energy, 43, 3 (2018).Google Scholar
  3. 3.
    J. H. Sun, S. P. Sun, M. H. Fan, H. Q. Guo, Y. F Lee and R. X Sun, J. Hazard. Mater., 153, 1–2 (2008).Google Scholar
  4. 4.
    M. Malakootian, M. H. Ehrampoush, H. Mahdizadeh and A. Golpaygani, J. Water Chem. Technol., 40, 6 (2018).CrossRefGoogle Scholar
  5. 5.
    S. Silambarasan and A. S. Vangnai, J. Hazard. Mater., 302 (2016).Google Scholar
  6. 6.
    W. S. Chen and C. P. Huang, Chemosphere., 125 (2015).Google Scholar
  7. 7.
    M. A. Oturan, Environ. Sci. Pollut. Res., 21, 14 (2014).CrossRefGoogle Scholar
  8. 8.
    C. Lai, M. M. Wang, G. M. Zeng, Y. G. Liu, D. L. Huang, C. Zhang, R. Z. Wang, P. Xu, M. Cheng, C. Huang, H. P. Wu and L. Qin, Appl. Surf. Sci., 390, 30 (2016).CrossRefGoogle Scholar
  9. 9.
    B. Li, C. Lai, G. Zeng, L. Qin, H. Yi, D. Huang, C. Zhou, X. Liu, M. Cheng, P. Xu, C. Zhang, F. Huang and S. Liu, ACS Appl. Mater. Interfaces, 10, 22 (2018).Google Scholar
  10. 10.
    J. Kim, C. Yeom and Y. Kim, Korean J. Chem. Eng., 33, 6 (2016).Google Scholar
  11. 11.
    H. Lin, Y. Lin and L. Liu, J. Taiwan Inst. Chem. Eng., 58 (2015).Google Scholar
  12. 12.
    M. Malakootian, H. Mahdizadeh, A. Nasiri, F. Mirzaienia, M. Hajhoseini and N. Amirmahani, Desalination, 438 (2018).Google Scholar
  13. 13.
    G. Hosseini, A. Maleki, H. Daraei, E. Faez and Y. Dadban Shahamat, Arab. J. Sci. Eng., 40, 11 (2015).Google Scholar
  14. 14.
    Z. Yang, Y. Ma, Y. Liu, Q. Li, Z. Zhou and Z. Ren, Chem. Eng. J., 315 (2017).Google Scholar
  15. 15.
    H. Yanhe, L. Han, L. Meili, S. Yimin, L. Cunzhen and C. Jiaqing, Sep. Purif. Technol., 170 (2016).Google Scholar
  16. 16.
    L. H. Liu, Y. Lin and Q. He, Adv. Mater. Res., 955–959 (2014).Google Scholar
  17. 17.
    O. Yahiaoui, L. Aizel, H. Lounici, N. Drouiche, M. Goosen, A. Pauss and N. Mameri, Desalination, 270 (2011).Google Scholar
  18. 18.
    K. Baek, H. H. Lee, H. J. Shin and J. W. Yang, Korean J. Chem. Eng., 17, 2 (2000).Google Scholar
  19. 19.
    H. Zhou, P. Lv, Y. Shen, J. Wang and J. Fan, Water Res., 47, 10 (2013).Google Scholar
  20. 20.
    B. Lai, Y. Zhou, P. Yang, J. Yang and J. Wang, Chemosphere., 90, 4 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Deng, D. Li, X. Yang, W. Xing, J. Li and Q. Zhang, Chemosphere., 168 (2017).Google Scholar
  22. 22.
    J. Shi, B. Zhang, S. Liang, J. Li and Z. Wang, Environ. Sci. Pollut. Res., 25, 9 (2018).CrossRefGoogle Scholar
  23. 23.
    M. A. Oturan, J. Peiroten, P. Chartrin and A. J. Acher, Environ. Sci. Technol., 34, 16 (2000).CrossRefGoogle Scholar
  24. 24.
    W. Huang and R. Liu, Adv. Mater. Res., 233–235 (2011).Google Scholar
  25. 25.
    APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, Ed. 20. USA (1998).Google Scholar
  26. 26.
    J. H. Sun, S. P. Sun, M. H. Fan, H. Q. Guo, L. P. Qiao and R. X. Sun, J. Hazard. Mater., 148, 1–2 (2007).Google Scholar
  27. 27.
    A. Khataee and M. Zarei, Desalination, 278, 1–3 (2011).Google Scholar
  28. 28.
    M. Malakootian, M. Pourshaban–Mazandarani, H. Hossaini and M. H. Ehrampoush, Process Saf. Environ. Prot., 104, Part A (2016).Google Scholar
  29. 29.
    L. Wu, L. Liao, G. Lv, F. Qin, Y. He and X. Wang, J. Hazard. Mater., 254–255, 15 (2013).Google Scholar
  30. 30.
    O. A. Zelekew and D. H. Kuo, Appl. Surf. Sci., 393, 30 (2017).CrossRefGoogle Scholar
  31. 31.
    S. Gautam, S. P. Kamble, S. B. Sawant and V. G. Pangarkar, Chem. Eng. J., 110, 1–3 (2005).Google Scholar
  32. 32.
    M. Mecozzi, E. Sturchio, P. Boccia, M. Zanellato, C. Meconi and F. Peleggi, Environ. Sci. Pollut. Res., 24, 6 (2017).CrossRefGoogle Scholar
  33. 33.
    X. Zhou, C. Lai, D. Huang, G. Zeng, L. Chen, L. Qin, P. Xu, M. Cheng, C. Huang, C. Zhang and C. Zhou, J. Hazard. Mater., 346 (2018).Google Scholar
  34. 34.
    Y. S. Zhao, C. Sun, J. Q. Sun and R. Zhou, Sep. Purif. Technol., 142 (2015).Google Scholar
  35. 35.
    K. Li, Z. Zheng, J. Feng, J. Zhang, X. Luo, G. Zhao and X. Huang, J. Hazard. Mater., 166, 2–3 (2009).Google Scholar
  36. 36.
    K. Zheng, B. Pan, Q. Zhang, W. Zhang, B. Pan, Y. Han, Q. Zhang, D. Wei, Z. Xu and Q. Zhang, Sep. Purif. Technol., 57, 2 (2007).CrossRefGoogle Scholar
  37. 37.
    B. Kamarehie, J. Mohamadian, S. A. Mousavi, G. Asgari and Y. Dadban Shahamat, Desalination Water Treat., 80 (2017).Google Scholar
  38. 38.
    A. Benito, A. Penadés, J. L. Lliberia and R. Gonzalez–Olmos, Chemosphere., 166 (2017).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Mohammad Malakootian
    • 1
    • 2
  • Mostafa Pournamdari
    • 3
  • Ali Asadipour
    • 4
  • Hakimeh Mahdizadeh
    • 2
    Email author
  1. 1.Environmental Health Engineering Research CenterKerman University of Medical SciencesKermanIran
  2. 2.Department of Environmental Health, School of Public HealthKerman University of Medical SciencesKermanIran
  3. 3.Department of Food and Drug Control, Faculty of PharmacyKerman University of Medical SciencesKermanIran
  4. 4.Department of Medicinal Chemistry, Faculty of PharmacyKerman University of Medical SciencesKermanIran

Personalised recommendations