Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 21–29 | Cite as

Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction

  • Pengcheng Ma
  • Taotao Fu
  • Chunying Zhu
  • Youguang Ma
Transport Phenomena
  • 48 Downloads

Abstract

The breakup and distribution of droplets at a branching T-junction were investigated experimentally by a high-speed camera. The effects of two-phase flow rates, two-phase Reynolds number and capillary number of the dispersed phase on droplet volume distribution were studied. The results indicated that the volume distribution ratio λ decreases first and then increases with the increase of two-phase flow ratio Qd/Qc. Similarly, as the Reynolds number Rec of the continuous phase increases, the volume distribution ratio λ also decreases at first and then increases. The increase of Reynolds number Red of the dispersed phase would lead to a reduction in the volume distribution ratio λ. Moreover, the increase of the capillary number Cad of dispersed phase could result in an increase in the volume distribution ratio λ. Correlations for predicting the volume distribution ratio were proposed, and the calculated results show good agreement with experimental data.

Keywords

Microchannel Droplet Breakup Distribution Interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Song, J. D. Tice and R. F. Ismagilov, Angew. Chem., 115, 792 (2003).CrossRefGoogle Scholar
  2. 2.
    S. K. Min, B. M. Lee, H. H. Jin, S. H. Ha and H. S. Shin, Korean J. Chem. Eng., 29, 392 (2012).CrossRefGoogle Scholar
  3. 3.
    J. Santos, L. A. Trujillo-Cayado, N. Calero, M. C. Alfaro and J. Muñoz, J. Ind. Eng Chem., 36, 90 (2016).CrossRefGoogle Scholar
  4. 4.
    R. S. Boogar, R. Gheshlaghi and M. A. Mahdavi, Korean J. Chem. Eng., 30, 45 (2013).CrossRefGoogle Scholar
  5. 5.
    J. W. Hwang, J. H. Choi, B. Choi, G. Lee, S. W. Lee, Y. M. Koo and W. J. Chang, Korean J. Chem. Eng., 33, 57 (2016).CrossRefGoogle Scholar
  6. 6.
    T. Cubaud and C. M. Ho, Phys. Fluids, 16, 4575 (2004).CrossRefGoogle Scholar
  7. 7.
    D. R. Link, S. L. Anna, D. A. Weitz and H. A. Stone, Phys. Rev. Lett., 92, 054503 (2004).CrossRefGoogle Scholar
  8. 8.
    A. M. Leshansky and L. M. Pismen, Phys. Fluids, 21, 023303 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Belloul, W. Engl, A. Colin, P. Panizza and A. Ajdari, Phys. Rev. Lett., 102, 194502 (2009).CrossRefGoogle Scholar
  10. 10.
    P. Parthiban and S. A. Khan, Lab Chip, 12, 582 (2012).CrossRefGoogle Scholar
  11. 11.
    B. M. Jose and T. Cubaud, Microfluid. Nanofluid., 12, 687 (2012).CrossRefGoogle Scholar
  12. 12.
    M. C. Jullien, M. J. Tsang Mui Ching, C. Cohen, L. Menetrier and P. Tabeling, Phys. Fluids, 21, 072001 (2009).CrossRefGoogle Scholar
  13. 13.
    D. A. Hoang, L. M. Portela, C. R. Kleijn, M. T. Kreutzer and V. van Steijn, J. Fluid Mech., 717 (2013).Google Scholar
  14. 14.
    B. Chen, G. Li, W. Wang and P. Wang, Appl. Therm. Eng., 88, 94 (2015).CrossRefGoogle Scholar
  15. 15.
    Y. Yong, S. Li, C. Yang and X. Yin, Chin. J. Chem. Eng., 21, 463 (2013).CrossRefGoogle Scholar
  16. 16.
    A. Bedram and A. Moosavi, Eur. Phys. J. E, 34, 78 (2011).CrossRefGoogle Scholar
  17. 17.
    M. Samie, A. Salari and M. B. Shafii, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 87, 053003 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Fu, Y. Ma and H. Z. Li, AIChE J., 60, 1920 (2014).CrossRefGoogle Scholar
  19. 19.
    X. Wang, C. Zhu, T. Fu and Y. Ma, Chem. Eng. Sci., 111, 244 (2014).CrossRefGoogle Scholar
  20. 20.
    X. Wang, C. Zhu, T. Fu and Y. Ma, AIChE J., 61, 1081 (2015).CrossRefGoogle Scholar
  21. 21.
    T. Moritani, M. Yamada and M. Seki, Microfluid. Nanofluid., 11, 601 (2011).CrossRefGoogle Scholar
  22. 22.
    J. Chen, S. Wang and S. Cheng, Chem. Eng. Sci., 84, 706 (2012).CrossRefGoogle Scholar
  23. 23.
    Y. Liu, W. Sun and S. Wang, Chem. Eng. Sci., 158, 267 (2017).CrossRefGoogle Scholar
  24. 24.
    J. Kim, J. Won and S. Song, Biomicrofluidics, 8, 054105 (2014).CrossRefGoogle Scholar
  25. 25.
    S. Lignel, A. V. Salsac, A. Drelich, E. Leclerc and I. Pezron, Colloids Surf. A, 531, 164 (2017).CrossRefGoogle Scholar
  26. 26.
    W. Du, T. Fu, C. Zhu, Y. Ma and H. Z. Li, AIChE J., 62, 325 (2016).CrossRefGoogle Scholar
  27. 27.
    T. Fu, Y. Ma, D. Funfschilling and H. Z. Li, Chem. Eng. Sci., 66, 4184 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China

Personalised recommendations