Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 12, pp 2464–2467 | Cite as

Optimization of electrolyte and carbon conductor for dilithium terephthalate organic batteries

  • Ji-Eun Lim
  • Jae-Kwang KimEmail author
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 43 Downloads

Abstract

Organic batteries are attractive alternatives to conventional inorganic batteries because of their low cost, biodegradation, and renewability, and their consequent environmental friendliness. We investigated the influence of carbon conductors and electrolytes in organic batteries using dilithium terephthalate (Li2C8H4O4). The synthesized dilithium terephthalate has well-grown crystallinity and non-uniform shaped particles without impurities. The dilithium terephthalate-based battery shows good electrochemical properties with a LiTFSI/TEGDME electrolyte and graphene as the carbon conductor in an organic electrode. The results are ascribed to the high lithium transference number of LiTFSI/TEGDME and the high electrical conductivity of graphene.

Keywords

Dilithium Terephthalate Carbon Conductor Electrolyte Organic Batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 18, 252 (2015).CrossRefGoogle Scholar
  2. 2.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).CrossRefGoogle Scholar
  3. 3.
    Y. Kiya, J. Henderson, G. Hutchison and H. Abrun, J. Mater. Chem., 17, 4366 (2007).CrossRefGoogle Scholar
  4. 4.
    G. Yang, Y. Zhang, Y. Huang, M. Shakir and Y. Xu, Phys. Chem. Chem. Phys., 18, 31361 (2016).CrossRefGoogle Scholar
  5. 5.
    T. Schon, B. McAllister, P. Li and D. Seferos, Chem. Soc. Rev., 45, 6345 (2016).CrossRefGoogle Scholar
  6. 6.
    D. Nevers, F. Brushett and D. Wheeler, J. Power Sources, 352, 226 (2017).CrossRefGoogle Scholar
  7. 7.
    J. K. Kim, J. Power Sources, 242, 683 (2013).CrossRefGoogle Scholar
  8. 8.
    Y. Xu, M. Zhou and Y. Lei, Mater. Today, 21, 60 (2017).CrossRefGoogle Scholar
  9. 9.
    Y. Liang, Z. Tao and J. Chen, Adv. Energy Mater., 2, 742 (2012).CrossRefGoogle Scholar
  10. 10.
    Q. Yu, D. Chen, J. Liang, Y. Chu, Y. Wu, W. Zhang, Y. Li, L. Li and R. Zeng, RSC Adv., 4, 59498 (2014).CrossRefGoogle Scholar
  11. 11.
    Q. Deng, J. Xue, W. Zou, L. Wang, A. Zhou and J. Li, J. Electroanal. Chem., 761, 74 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P. Poizot and J.-M. Tarascon, Nat. Mater., 8, 120 (2009).CrossRefGoogle Scholar
  13. 13.
    G. Elia, J. B. Park, Y. K. Sun, B. Scrosati and J. Hassoun, ChemElectroChem., 1, 47 (2014).CrossRefGoogle Scholar
  14. 14.
    J. K. Kim, A. Matic, J. H. Ahn and P. Jacobsson, RSC Adv., 2, 9795 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. Tang, L. Liu, H. Zhao, D. Jia and W, Liu, J. Mater. Chem. A., 4, 2089 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Zhang, J. Power Sources, 162, 1379 (2006).CrossRefGoogle Scholar
  17. 17.
    J. Cheng and J. Du, CrystEngComm., 14, 397 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Department of Solar & Energy EngineeringCheongju UniversityCheongju, ChungbukKorea

Personalised recommendations