Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 1, pp 84–91 | Cite as

Sensitivity analysis of key factors in controlling absorption and desorption of oxygen to oxygen carriers

  • Limin Hou
  • Qingbo YuEmail author
  • Kun Wang
  • Shuo Zhang
  • Qin Qin
  • Fan Yang
Separation Technology, Thermodynamics
  • 19 Downloads

Abstract

Chemical looping air separation gives an oxygen resource for the oxy-fuel combustion system. To investigate the sensitivity of operation parameters and optimal operation parameters, with the consideration of the reactor temperature, we used the oxygen concentration, and reaction gas flow, an orthogonal experiment and multi-objective comprehensive evaluation method to analyze the results obtained by fixed-bed apparatus with the YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.5Dy0.5BaCo4O7+δ, and Y0.2Ti0.05Dy0.75BaCo4O7+δ oxygen carriers. The results showed that the effects of operating conditions on oxygen absorption/desorption properties varieds in the order: oxygen concentration>gas flow rate>absorption temperature=desorption temperature. Analysis of max-min difference showed that the optimum operating conditions such as absorption temperature, 350 °C, desorption temperature, 430 °C, gas flow rate, 200 ml/min, and oxygen concentration, 21% were confirmed.

Keywords

Orthogonal Test Multi-objective Comprehensive Evaluation Oxygen Carrier Sensitivity Optimum Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. Yang and J. Y. S. Lin, Sep. Purif. Technol., 49(1), 27 (2006).Google Scholar
  2. 2.
    B. Moghtaderi, Energy Fuels, 24(1), 190 (2010).Google Scholar
  3. 3.
    H. Song, K. Shah, E. Doroodchi and B. Moghtaderi, Energy Fuels, 28(1), 163 (2014).Google Scholar
  4. 4.
    H. Song, K. Shah, E. Doroodchi, T. Wall and B. Moghtaderi, Energy Fuels, 28(1), 173 (2014).Google Scholar
  5. 5.
    S. Y. Chuang, J. S. Dennis, A. D. Hayhurst and S. A. Scott, Combust. Flame, 154(1–2), 109 (2008).Google Scholar
  6. 6.
    K. Wang, Q. B. Yu and Q. Qin, Energy Fuels, 27(9), 5466 (2013).Google Scholar
  7. 7.
    K. Wang, Q. B. Yu, Q. Qin, J. Z. Li and Z. M. Wang, J. Inorg. Mater., 29(3), 301 (2014).Google Scholar
  8. 8.
    M. Ishida, M. Yamamoto and T. Ohba, Energy Convers. Manag., 43(9–12), 1469 (2002).Google Scholar
  9. 9.
    T. Mattisson, A. Lyngfelt and H. Leion, Int. J. Greenhouse Gas Control., 3(1), 11 (2009).Google Scholar
  10. 10.
    M. Arjmand, A. Azad, H. Leion, A. Lyngfelt and T. Mattisson, Energy Fuels, 25(11), 5493 (2011).Google Scholar
  11. 11.
    A. Shulman, E. Cleverstam, T. Mattisson and A. Lyngfelt, Fuel, 90(3), 941 (2011).Google Scholar
  12. 12.
    G. Azimi, H. Leion, T. Mattisson and A. Lyngfelt, Energy Procedia, 4(1), 370 (2011).Google Scholar
  13. 13.
    K. Zhao, F. He, Z. Huang, G. Q. Wei, A. Q. Zheng, H. B. Li and Z. L. Zhao, Korean J. Chem. Eng., 34(6), 1651 (2017).Google Scholar
  14. 14.
    B. Y. Kwak, N. K. Park, J. I. Baek, H. J. Ryu and M. Kang, Korean J. Chem. Eng., 34(7), 1936 (2017).Google Scholar
  15. 15.
    Z. Cheng, L. Qin, J. A. Fan and L.-S. Fan, Eng., DOI:https://doi. org/10. 1016/j. eng. 2018. 05. 002.Google Scholar
  16. 16.
    M. M. Hossain, Arab. J. Sci. Eng., 1 (2017), DOI:10. 1007/s13369-017-2706-9.Google Scholar
  17. 17.
    J. Zhu, W. Wang, S. J. Lian, X. N. Hua and Z. Xia, J. Mater. Cycles Waste, 19(1), 453 (2017).Google Scholar
  18. 18.
    W. Q. Shen, MA Diss., Huazhong University of Science and Technology (2012).Google Scholar
  19. 19.
    T. Zhang, Z. S. Li and N. S. Cai, J. Chem. Eng., 26(3), 845 (2009).Google Scholar
  20. 20.
    M. Valldor and M. Andersson, Solid State Sci., 4(7), 923 (2002).Google Scholar
  21. 21.
    M. Karppinen, H. Yanauchi and S. Otani, Chem. Mater., 18(2), 490 (2006).Google Scholar
  22. 22.
    T. Motohashi, S. Kadita, H. Fjellvag, M. Karppinen and H. Yamauchi, Mater. Sci Eng. B., 148(1), 196 (2008).Google Scholar
  23. 23.
    Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda and M. Sugiura, Catal. Today, 74(3–4), 225 (2007).Google Scholar
  24. 24.
    J. Kašpar and P. Fornasiero, J. Solid State Chem., 171(1–2), 19 (2003).Google Scholar
  25. 25.
    S. Kadota, M. Kappinen, T. Motohashi and H. Yamauchi, Chem. Mater., 20(20), 6378 (2008).Google Scholar
  26. 26.
    S. Wang, H. S. Hao, B. F. Zhu, J. F. Jia and X. Hu, J. Mater. Sci., 43(15), 5385 (2008).Google Scholar
  27. 27.
    S. M. Zhang, MA Dissertation, ZhengZhou University (2011).Google Scholar
  28. 28.
    L. J. Guo, MA Dissertation, ZhengZhou University (2005).Google Scholar
  29. 29.
    L. P. Kozeeva, M. Y. Kameneva, A. N. Lavrov and N. V. Podberezskaya, Inorg. Mater., 49(6), 626 (2013).Google Scholar
  30. 30.
    O. Parkkima, H. Yamauchi and M. Karppinen, Chem. Mater., 25(4), 599 (2013).Google Scholar
  31. 31.
    M. Valldor, Solid State Sci., 7(10), 1163 (2005).Google Scholar
  32. 32.
    L. M. Hou, Q. B. Yu, T. Wang, K. Wang, Q. Qin and Z. F. Qi, Korean J. Chem. Eng., 35(3), 626 (2018).Google Scholar
  33. 33.
    A. D. Qi, S. D. Wang, G. Z. Fu, C. J. Ni and D. Y. Wu, Appl. Catal. A: Gen., 281(1–2), 233 (2005).Google Scholar
  34. 34.
    B. B. Shi and Z. D. Jiang, Nat. Gas Chem. Ind., 38(3), 11 (2013).Google Scholar
  35. 35.
    K. Wang, MA Diss., Shanghai Jiaotong University (2009).Google Scholar
  36. 36.
    S. Cimino, L. Lisi, R. Pirone, G. Russo and M. Turco, Catal. Today, 59(1), 19 (2000).Google Scholar
  37. 37.
    K. Wang, Q. B. Yu, Q. Qin, Z. L. Zuo and T. W. Wu, Chem. Eng. J., 287, 292 (2016).Google Scholar
  38. 38.
    Q. Liu, J. J. Shi, S. D. Zheng, M. N. Tao, Y. He and Y. Shi, Ind. Eng. Chem. Res., 53(29), 11677 (2014).Google Scholar
  39. 39.
    M. T. Wang, Chin. Soft Sci., 08, 100 (1999).Google Scholar
  40. 40.
    H. L. Ni, Z. Y. Wu, I. Muhammad, Z. Y. Lu and J. C. Li, Bra J. Pharmacogn., 28(2), 151 (2018).Google Scholar
  41. 41.
    Y. J. Zuo, MA Diss., Guangdong University Technology (2012).Google Scholar
  42. 42.
    F. Kong, Y. Bi, C. Yan and Z. Zeng, J. Med. Plants Res., 7(12), 720 (2013).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2019

Authors and Affiliations

  • Limin Hou
    • 1
  • Qingbo Yu
    • 1
    • 2
    Email author
  • Kun Wang
    • 1
  • Shuo Zhang
    • 1
  • Qin Qin
    • 1
  • Fan Yang
    • 1
  1. 1.School of MetallurgyNortheastern UniversityShenyangP. R. China
  2. 2.Northeastern UniversityShenyang, LiaoningP. R. China

Personalised recommendations