Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 12, pp 2327–2335 | Cite as

Modeling, simulation and structural analysis of a fluid catalytic cracking (FCC) process

  • Sungho Kim
  • Jaejung Urm
  • Dae Shik Kim
  • Kihong Lee
  • Jong Min LeeEmail author
Process Systems Engineering, Process Safety
  • 73 Downloads

Abstract

Fluid catalytic cracking (FCC) is an important chemical process that is widely used to produce valuable petrochemical products by cracking heavier components. However, many difficulties exist in modeling the FCC process due to its complexity. In this study, a dynamic process model of a FCC process is suggested and its structural observability is analyzed. In the process modeling, yield function for the kinetic model of the riser reactor was applied to explain the product distribution. Hydrodynamics, mass balance and energy balance equations of the riser reactor and the regenerator were used to complete the modeling. The process model was tested in steady-state simulation and dynamic simulation, which gives dynamic responses to the change of process variables. The result was compared with the measured data from operating plaint. In the structural analysis, the system was analyzed using the process model and the process design to identify the structural observability of the system. The reactor and regenerator unit in the system were divided into six nodes based on their functions and modeling relationship equations were built based on nodes and edges of the directed graph of the system. Output-set assignment algorithm was demonstrated on the occurrence matrix to find observable nodes and variables. Optimal locations for minimal addition of measurements could be found by completing the whole output-set assignment algorithm of the system. The result of this study can help predict the state more accurately and improve observability of a complex chemical process with minimal cost.

Keywords

Fluid Catalytic Cracking Yield Function Process Modeling Structural Observability Occurrence Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Sadeghbeigi, Fluid Catalytic Cracking Handbook: Design, Operation, and Troubleshooting of FCC facilities, Elsevier (2000).Google Scholar
  2. 2.
    R. J. Quann and S.B. Jae, Ind. Eng. Chem. Res., 31(11), 2483 (1992).CrossRefGoogle Scholar
  3. 3.
    R. K. Gupta, V. Kumar and V. K. Srivastava, Chem. Eng. Sci., 62(17), 4510 (2007).CrossRefGoogle Scholar
  4. 4.
    V.W. Weekman, Lumps, Models and Kinetics in Practice, American Institute of Chemical Engineers (2000).Google Scholar
  5. 5.
    V.W. Weekman Jr. and D. M. Nace, AIChE J., 16(3), 397 (1970).CrossRefGoogle Scholar
  6. 6.
    L.-S. Lee, Y.W. Chen, T. N. Huang and W.Y. Pan, Can. J. Chem. Eng., 67(4), 615 (2007).CrossRefGoogle Scholar
  7. 7.
    I. S. Han and C. B. Chung, Chem. Eng. Sci., 56(5), 1951 (2001).CrossRefGoogle Scholar
  8. 8.
    C. Jia, S. Rohani and A. Jutan, Chem. Eng. Process.: Process Intensification, 42(4), 311 (2003).CrossRefGoogle Scholar
  9. 9.
    R. Roman, Z.K. Nagy, M.V. Cristea and S. P. Agachi, Comput. Chem. Eng., 33(3), 605 (2009).CrossRefGoogle Scholar
  10. 10.
    G.M. Bollas, A. A. Lappas, D. K. Iatridis and I. A. Vasalos, Catal. Today, 127, 31 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Corella abd E. Frances, Stud. Surf. Sci. Catal., 68, 375 (1991).CrossRefGoogle Scholar
  12. 12.
    S.M. Jacob, B. Gross, S.E. Voltz and V.W. Weekman, AIChE J., 22(4), 701 (1976).CrossRefGoogle Scholar
  13. 13.
    A. Arbel, Z. Huang, I. H. Rinard, R. Shinnar and A.V. Sapre, Ind. Eng. Chem. Res., 34(4), 1228 (1995).CrossRefGoogle Scholar
  14. 14.
    S. Kumar, A. Chadha, R. Gupta and R. Sharma, Ind. Eng. Chem. Res., 34(11), 3737 (1995).CrossRefGoogle Scholar
  15. 15.
    Y.Y. Liu, J. J. Slotine and A. L. Barabasi, Proc. National Academy of Sci., 110(7), 2460 (2012).CrossRefGoogle Scholar
  16. 16.
    K.J. Reinschke, Multivariable Control: A Graph Theoretic Approach, Springer-Verlag (1988).CrossRefGoogle Scholar
  17. 17.
    M. Anushka, S. Perera, B. Lie and C. Fernando, Modeling, Identification and Control, 36(3), 189 (2015).CrossRefGoogle Scholar
  18. 18.
    J. L. Fernandes, J. J. Verstraete, C. I. Pinheiro, N. M. C. Oliveira and F. R. Ribeiro, Chem. Eng. Sci., 62(4), 1184 (2007).CrossRefGoogle Scholar
  19. 19.
    T. S. Pugsley and F. Berruti, Powder Technol., 89(10), 57 (1996).CrossRefGoogle Scholar
  20. 20.
    Y. S. Won, A. Jeong, J. Choi, S. Jo, H. Ryu and C. Yi, Korean J. Chem. Eng., 34(3), 913 (2017).CrossRefGoogle Scholar
  21. 21.
    R.V. Shendye and R.A. Rajadhyaksha, Chem. Eng. Sci., 47(3), 661 (1992).CrossRefGoogle Scholar
  22. 22.
    D.M. Nace, Ind. Eng. Chem. Prod. Res. Dev., 8(1), 24 (1969).CrossRefGoogle Scholar
  23. 23.
    M.-R. Riazi, Characterization and Properties of Petroleum Fractions, ASTM International (2005).CrossRefGoogle Scholar
  24. 24.
    Y. S. Won, D. Kim and J. Choi, Korean J. Chem. Eng., 35(3), 812 (2018).CrossRefGoogle Scholar
  25. 25.
    J. L. Fernandes, C. I. C. Pinheiro, N. M. C. Oliveria, A. I. Neto and F. R. Ribeiro, Chem. Eng. Sci., 62(22), 6308 (2007).CrossRefGoogle Scholar
  26. 26.
    J.A. Bondy and U. S.R. Murty, Graph Theory with Applications, Elsevier (1982).Google Scholar
  27. 27.
    I. Ponzoni, M. C. Sanchez and N.B. Brignole, Ind. Eng. Chem. Res., 38, 3027 (1999).CrossRefGoogle Scholar
  28. 28.
    I. Ponzoni, M. C. Sanchez and N.B. Brignole, Ind. Eng. Chem. Res., 43, 577 (2004).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Sungho Kim
    • 1
  • Jaejung Urm
    • 1
  • Dae Shik Kim
    • 1
  • Kihong Lee
    • 2
  • Jong Min Lee
    • 1
    Email author
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulKorea
  2. 2.Hyundai Oilbank Co.Chungcheongnam-doKorea

Personalised recommendations